MATLAB® Compiler™
User's Guide

R2014b

MATLAB

<} MathWorks

X B

How to Contact MathWorks

Latest news: www . mathworks .com

Sales and services: www.mathworks.com/sales_and_services
User community: www . mathworks .com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

MATLAB® Compiler™ User's Guide
© COPYRIGHT 1995-2014 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used

or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails

to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www . mathworks . com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks . com/patents for more information.

www.mathworks.com
www.mathworks.com/sales_and_services
www.mathworks.com/matlabcentral
www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

September 1995
March 1997
January 1998
January 1999
September 2000
October 2001
July 2002

June 2004
August 2004
October 2004
November 2004
March 2005
September 2005
March 2006
September 2006
March 2007
September 2007
March 2008
October 2008
March 2009
September 2009
March 2010
September 2010
April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014

First printing
Second printing
Third printing
Fourth printing
Fifth printing
Online only
Sixth printing
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Seventh printing
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

Revised for Version 1.2

Revised for Version 2.0 (Release 11)
Revised for Version 2.1 (Release 12)
Revised for Version 2.3

Revised for Version 3.0 (Release 13)
Revised for Version 4.0 (Release 14)
Revised for Version 4.0.1 (Release 14+)
Revised for Version 4.1 (Release 14SP1)
Revised for Version 4.1.1 (Release 14SP1+)
Revised for Version 4.2 (Release 14SP2)
Revised for Version 4.3 (Release 14SP3)
Revised for Version 4.4 (Release 2006a)
Revised for Version 4.5 (Release 2006b)
Revised for Version 4.6 (Release 2007a)
Revised for Version 4.7 (Release 2007b)
Revised for Version 4.8 (Release 2008a)
Revised for Version 4.9 (Release 2008b)
Revised for Version 4.10 (Release 2009a)
Revised for Version 4.11 (Release 2009b)
Revised for Version 4.13 (Release 2010a)
Revised for Version 4.14 (Release 2010b)
Revised for Version 4.15 (Release 2011a)
Revised for Version 4.16 (Release 2011b)
Revised for Version 4.17 (Release 2012a)
Revised for Version 4.18 (Release 2012b)
Revised for Version 4.18.1 (Release 2013a)
Revised for Version 5.0 (Release 2013b)
Revised for Version 5.1 (Release R2014a)
Revised for Version 5.2 (Release R2014b)

Contents

1

Getting Started
MATLAB Compiler Product Description 1-2
Key Features i, 1-2

Appropriate Tasks for MATLAB Compiler and Builder
Products

MATLAB Application Deployment Products
Roles in Deploying as a Standalone Application
Roles in Deploying in a C/C++ Shared Library
Roles in Deploying to MATLAB Production Server
Create and Install a Standalone Application from MATLAB
Code
Create a Standalone Application in MATLAB
Install a MATLAB Generated Standalone Application
Create a C/C++ Shared Library from MATLAB Code

Integrate a C/C++ Shared Library into an Application

Create a Deployable Archive for MATLAB Production
SeIVeT e

For More Information

1-5

1-7

1-8

1-11
1-11
1-14
1-18

1-23

1-28

1-32

vi

Installation and Configuration

2|

Install an ANSI C or C++ Compiler 2-2
Supported ANSI C and C++ Windows Compilers 2-2
Supported ANSI C and C++ UNIX Compilers 2-2
Common Installation Issues and Parameters 2-3

Configuring Your Options File with mbuild 2-5
What Is mbuild? 2-5
Locating and Customizing the Options File 2-5

Solving Installation Problems 2-8

Deploying Standalone Applications

3

Contents

Package Standalone Application with Application Compiler
APP .o e 3-2

Customize the Application’s Run Time Behavior 3-7

Compile a Standalone Application from the Command

Line 3-8
Execute Compiler Projects with deploytool 3-8
Compile a Standalone Application with mece 3-8

Working with Standalone Applications and Arguments . . . 3-10
OVEIVIEW . o ittt et e e 3-10
Passing File Names, Numbers or Letters, Matrices, and

MATLAB Variables 3-10
Running Standalone Applications that Use Arguments 3-11

Deploy Standalone Applications with the Parallel Computing

Toolbox 3-14
Standalone Applications with a Profile Passed at Run-Time 3-14
Standalone Applications with an Embedded Profile 3-15

Run a Mac OS X Application 3-17

OVEIVIEW . . ittt et e e et e e e e e 3-17
Installing the Macintosh Application Launcher Preference

Pane 3-17
Configuring the Installation Area 3-17
Launching the Application 3-20

Deploying C/C++ Shared Libraries

4

Compile a C/C++ Shared Library with the Library Compiler

APP . o e 4-2
Compile a C/C++ Shared Library from the Command Line . . 4-6
Execute Compiler Projects with deploytool 4-8
Compile a Shared Library withmece 4-6
What Are Wrapper Files? 4-8
C Library Wrapperot 4-8

C++ Library Wrappert 4-8

Distributing Applications That Call MATLAB Based Shared
Libraries 4-9

Distribute Shared Libraries to Be Used with Other
Projects e 4-10

Compiling Deployable Archives for MATLAB
Production Server

S|

State-Dependent Functions 5-2
Does My MATLAB Function Carry State? 5-2
Defensive Coding Practices 5-2
Techniques for Preserving State 5-3

vii

Unsupported MATLAB Data Types for Client and Server

Marshaling 5-5
Compile a Deployable Archive with the Production Server
Compiler App 5-6
Compile a Deployable Archive from the Command Line . . 5-11
Execute Compiler Projects with deploytool 5-8
Compile a Deployable Archive withmec 5-11

Customizing a Compiler Project

6/

Customize the Installer 6-2
Change the Application Icon 6-2
Add Application Information 6-3
Change the Splash Screen 6-3
Change the Installation Path 6-4
Changethe Logo 6-4
Edit the Installation Notes 6-5
Manage Required Files in a Compiler Project 6-6
Dependency Analysis 6-6
Using the Compiler Apps 6-6
USING MCC . .ottt e e e et e e 6-6
Specify Files to Install with the Application 6-8
Manage Support Packages 6-9
Using a Compiler Appo i i 6-9
Using the Command Line 6-10

viii Contents

MATLAB Code Deployment

7]

Application Deployment Products and the Compiler Apps .
What Is the Difference Between the Compiler Apps and the mcc

Command Line?
How Does MATLAB Compiler Software Build My

Application?
Dependency Analysis Function
MEX-Files, DLLs, or Shared Libraries
Deployable Archive

Write Deployable MATLAB Code

Compiled Applications Do Not Process MATLAB Files at
Runtime
Do Not Rely on Changing Directory or Path to Control the
Execution of MATLAB Files
Use ismcc and isdeployed Functions To Execute Deployment-
Specific Code Paths
Gradually Refactor Applications That Depend on
Noncompilable Functions
Do Not Create or Use Nonconstant Static State Variables . .
Get Proper Licenses for Toolbox Functionality You Want to
Deploy

How the Deployment Products Process MATLAB Function
Signatures e

MATLAB Function Signature
MATLAB Programming Basics

Load MATLAB Libraries using loadlibrary

Restrictions on Using MATLAB Function loadlibrary with
MATLAB Compiler i,

Use MATLAB Data Files (MAT Files) in Compiled
Applications

Explicitly Including MAT files Using the %#function Pragma
Load and Save Functions
MATLAB Objectso ot e e

7-10

7-10

7-11

7-11

7-12
7-12

7-13
7-14
7-14
7-14
7-16
7-17
7-18
7-18

7-18
7-21

ix

C and C++ Standalone Executable and Shared
Library Creation

8

Input and Output Files 8-2

Standalone Executable 8-2

C Shared Library 00, 8-2

C++ Shared Library 8-4

Macintosh 64 (Maci64)c.cuiiiiinennnnn.. 8-5
Dependency Analysis Function and User Interaction with the

Compilation Path 8-6

addpath and rmpath in MATLAB 8-6

Passing -I <directory> on the Command Line 8-6

Passing -N and -p <directory> on the Command Line 8-6

Hadoop Integration

4

Contents

Package Deployable Archive to Run Against Hadoop with
Hadoop Compiler App 9-2

Create Deployable Archive to Run Against Hadoop Using
INCC . o .ottt e e et e e e e e e e 9-6

Create Standalone Application to Run Against Hadoop Using

INCC .« ottt e e e e e e 9-9
Hadoop Configuration 9-12
When Using Hadoop Standalone Mode 9-12
Hadoop Version Considerations 9-12
Hadoop Settings File 9-13

10|

Deployment Process

11

OvVerview
Watch a Video

Deploying to Developers
Procedure
What Software Does a Developer Need?
Ensuring Memory for Deployed Applications

Deployingto End Users
Steps by the Developer to Deploy to End Users
What Software Does the End User Need?
Using Relative Paths with Project Files
Porting Generated Code to a Different Platform
Extracting a Deployable Archive Without Executing the

Contents
Ensuring Memory for Deployed Applications

Working with the MATLAB Runtime
About the MATLAB Runtime
The MATLAB Runtime Installer
Installing the MATLAB Runtime Non-Interactively
Uninstalling the MATLAB Runtime
MATLAB Runtime Startup Options
Using the MATLAB Runtime User Data Interface
Displaying MATLAB Runtime Initialization Start-Up and
Completion Messages For Users

Deploy Applications Created Using Parallel Computing
Toolbox e
Package and Deploy a Shared Library with the Parallel
Computing Toolboxc.......

Deploying a Standalone Application on a Network Drive
(Windows Only)

11-2
11-2

11-3
11-3
11-3
11-5

11-6
11-6
11-8
11-11
11-11

11-11
11-12
11-13
11-13
11-14
11-22
11-24
11-27
11-30

11-32

11-34

11-34

11-35

xi

xii

MATLAB Compiler Deployment Messages 11-37

Using MATLAB Compiler Generated DLLs in Windows
ServiCes 11-38

Reserving Memory for Deployed Applications with MATLAB

Memory Shielding 11-39
What Is MATLAB Memory Shielding and When Should You
Use It? .. 11-39
Requirements for Using MATLAB Memory Shielding 11-40
Invoking MATLAB Memory Shielding for Your Deployed
Application 11-40

Distributing Code to an End User

12

Share MATLAB Code Using the MATLAB Runtime 12-2
Distributing MATLAB Code Using the MATLAB Runtime . 12-2

Compiler Commands

13|

Contents

Command Overviewot .. 13-2
Compiler Options0 ... 13-2
Combining Optionsu ... 13-2
Conflicting Options on the Command Line 13-3
Using File Extensions 13-3
Interfacing MATLAB Code to C/C++ Code 13-4

Simplify Compilation Using Macros 13-5
Macro Options i 13-5
Working With Macro Options 13-5

Invoke MATLAB Build Options 13-7
Specifying Full Path Names to Build MATLAB Code 13-7
Using Bundle Files to Build MATLAB Code 13-8

MATLAB Runtime Component Cache and Deployable Archive

14

Embedding 13-10
Overriding Default Behavior 13-11
For More Information 13-11
Explicitly Including a File for Compilation Using the
%#function Pragma 13-12
Using feval 13-12
Using %#function 13-12
Use the mxArray API to Work with MATLAB Types 13-14
Script Files 13-15
Converting Script MATLAB Files to Function MATLAB
Files 13-15
Including Script Files in Deployed Applications 13-16
Compiler Tips i 13-17
Calling a Function from the Command Line 13-17
Using winopen in a Deployed Application 13-18
Using MAT-Files in Deployed Applications 13-18
Compiling a GUI That Contains an ActiveX Control 13-18
Debugging MATLAB Compiler Generated Executables . . . 13-18
Deploying Applications That Call the Java Native Libraries 13-19
Locating .fig Files in Deployed Applications 13-19
Terminating Figures by Force In a Standalone Application 13-19
Passing Arguments to and from a Standalone Application . 13-20
Using Graphical Applications in Shared Library Targets . . 13-21
Using the VER Function in a Compiled MATLAB
Application 13-21
Standalone Applications
Introduction 14-2
Deploying Standalone Applications 14-3
Compiling the Application 14-3
Testing the Application 14-3
Deploying the Application 14-4

xiii

xiv

Contents

Running the Application 14-6

Libraries

Addressing mwArrays Above the 2 GB Limit 15-2

Calling a Shared Library 15-3

Initializing and Terminating Your Application with

mcllnitializeApplication and mclTerminateApplication . . 15-3

Using a Shared Library 15-6

Restrictions When using MATLAB Function loadlibrary . . . 15-7

Integrate C Shared Libraries 15-8

C Shared Library Wrapper 15-8

C Shared Library Example 15-8

Integrate C++ Shared Libraries 15-12

C++ Shared Library Wrapper 15-12

C++ Shared Library Example 15-12
How the mcImcrrt Proxy Layer Handles Loading of

Libraries 15-16

Call MATLAB Compiler API Functions (mcl*) from C/C++

Code 15-18
Functions in the Shared Library 15-18
Type of Application v un. ... 15-18
Structure of Programs That Call Shared Libraries 15-19
Library Initialization and Termination Functions 15-20
Print and Error Handling Functions 15-21
Functions Generated from MATLAB Files 15-22
Retrieving MATLAB Runtime State Information While Using

Shared Libraries, 15-27

About Memory Management and Cleanup 15-28
OVEIVIEW . ot ittt e e e e e 15-28
Passing mxArrays to Shared Libraries 15-28

Troubleshooting

16

Introduction 16-2
Common Issues 16-3
Address Compilation Failures 16-4
Address Failures that Arise During Testing 16-9
Address Failures that Arise When Deploying the Application
toEnd Users 16-13
Troubleshoot mbuild 16-15
MATLAB Compiler 16-17
Deployed Applications 16-20
Error and Warning Messages 16-24
About Error and Warning Messages 16-24
Compile-Time Errors 16-24
Warning Messages it 16-27
Dependency Analysis Errors 16-29

Limitations and Restrictions

17

MATLAB Compiler Limitations 17-2
Compiling MATLAB and Toolboxes 17-2
Fixing Callback Problems: Missing Functions 17-3
Finding Missing Functions in a MATLAB File 17-5
Suppressing Warnings on the UNIX System 17-5
Cannot Use Graphics with the -nojvm Option 17-5
Cannot Create the Output File 17-5
No MATLAB File Help for Compiled Functions 17-6
No MATLAB Runtime Versioning on Mac OS X 17-6

Xv

xvi

Contents

Older Neural Networks Not Deployable with MATLAB

Compiler 17-6
Restrictions on Calling PRINTDLG with Multiple Arguments in
Compiled Mode 17-7
Compiling a Function with WHICH Does Not Search Current
Working Directoryc0 ... 17-7
Restrictions on Using C++ SETDATA to Dynamically Resize an
MWArray e 17-8
Licensing Terms and Restrictions on Compiled
Applications e 17-9
MATLAB Functions That Cannot Be Compiled 17-10

Reference Information

18]

MATLAB Runtime Path Settings for Development and

Testing e 18-2
OVEIVIEW . o ittt e e e 18-2
Path for Java Development on All Platforms 18-2
Path Modifications Required for Accessibility 18-2
Windows Settings for Development and Testing 18-3
Linux Settings for Development and Testing 18-3
Mac Settings for Development and Testing 18-3

MATLAB Runtime Path Settings for Run-time

Deployment 18-4
General Path Guidelines 18-4
Path for Java Applications on All Platforms 18-4
Windows Path for Run-Time Deployment 18-4
Linux Paths for Run-Time Deployment 18-5
Mac Paths for Run-Time Deployment 18-5

MATLAB Compiler Licensing 18-6
Using MATLAB Compiler Licenses for Development 18-6
Deployment Product Terms 18-8

Functions — Alphabetical List

19

MATLAB Compiler Quick Reference

A

Common Uses of MATLAB Compiler A-2
Create a Standalone Application A-2
Create a Library A-2

mcc Command Arguments Listed Alphabetically A4

mcc Command Line Arguments Grouped by Task A-7

Accepted File Types A-12

Using MATLAB Compiler on Mac or Linux

Install MATLAB Compiler on Mac or Linux B-2
Installing MATLAB Compiler B-2
Custom Configuring Your Options File B-2
Install Apple Xcode from DVD on Maci64 B-2

Write Applications for Mac or Linux B-3
Objective-C/C++ Applications for Apple’s Cocoa API B-3
Where’s the Example Code? B-3
Preparing Your Apple Xcode Development Environment . . . B-3
Build and Run the Sierpinski Application B-4
Running the Sierpinski Application B-5

Build Your Application on Mac or Linux B-9
Compiling Your Application with the Compiler Apps B-9
Compiling Your Application with the Command Line B-9

Test Your Application on Mac or Linux B-10

xvil

xviii

Set MATLAB Runtime Paths on Mac or Linux with Scripts B-11
Solving Problems Related to Setting MATLAB Runtime Paths
onMacor Linux, B-11

C++ Utility Library Reference

C

Data Conversion Restrictions for the C++ MWArray API . . C-2
Primitive Types e C-3
C++ Utility Classes 0. C-14

Apps — Alphabetical List

20

Contents

Getting Started

“MATLAB Compiler Product Description” on page 1-2

“Appropriate Tasks for MATLAB Compiler and Builder Products” on page 1-3
“MATLAB Application Deployment Products ” on page 1-5

“Roles in Deploying as a Standalone Application” on page 1-7

“Roles in Deploying in a C/C++ Shared Library” on page 1-8

“Roles in Deploying to MATLAB Production Server” on page 1-9

“Create and Install a Standalone Application from MATLAB Code” on page 1-11
“Create a C/C++ Shared Library from MATLAB Code” on page 1-18

“Integrate a C/C++ Shared Library into an Application” on page 1-23

“Create a Deployable Archive for MATLAB Production Server” on page 1-28

“For More Information” on page 1-32

1 Getting Started

MATLAB Compiler Product Description

1-2

Build standalone applications and software components from MATLAB programs

MATLAB Compiler lets you share MATLAB programs as standalone applications or
shared libraries for integration with common programming languages. Applications
and libraries created with MATLAB Compiler use the MATLAB Compiler Runtime
(MCR), which enables royalty-free deployment to users who do not have MATLAB. You
can package the MATLAB Compiler Runtime with the application or have your users
download it during installation

Learn more about MATLAB Compiler support for MATLAB and toolboxes.

Key Features

+ Packaging of your MATLAB programs as standalone applications or shared libraries

* Royalty-free distribution of applications to users who do not have MATLAB

Integration of MATLAB programs into Java®, Microsoft® .NET, and
Excel®applications using MATLAB builder products

+ Large-scale deployment of MATLAB programs using MATLAB Production Server™
* Encryption of MATLAB code to protect your intellectual property

http://www.mathworks.com/products/compiler/compiler_support.html

Appropriate Tasks for MATLAB Compiler and Builder Products

Appropriate Tasks for MATLAB Compiler and Builder Products

MATLAB Compiler compiles MATLAB code into standalone applications, libraries
that can be integrated into other applications, or into deployable archives for use with
MATLAB Production Server. By default, MATLAB Compiler can generate standalone
applications, C/C++ shared libraries, and deployable archives for use with MATLAB
Production Server. Additional builders are available for Java, NET, and Microsoft®
Excel®.

While MATLAB Compiler lets you run your MATLAB application outside the MATLAB
environment, it is not appropriate for all external tasks you may want to perform. Some
tasks require either the MATLAB Coder™ product or MATLAB external interfaces.
Use the following table to determine if MATLAB Compiler and builder products are
appropriate to your needs.

MATLAB Compiler Task Matrix

Task MATLAB MATLAB Coder | MATLAB External
Compiler Interfaces

and Builders

Package MATLAB applications for]

deployment to users who do not
have MATLAB

Package MATLAB applications for [
deployment to MATLAB Production
Server

Build non-MATLAB applications [
that include MATLAB functions

Generate readable, efficient, and [
embeddable C code from MATLAB
code

Generate MEX functions from [
MATLAB code for rapid prototyping

and verification of generated C code
within MATLAB

Integrate MATLAB code into [
Simulink®

Speed up fixed-point MATLAB code [

1-3

1 Getting Started

Generate hardware description [

language (HDL) from MATLAB code

Integrate custom C code into [
MATLAB with MEX files

Call MATLAB from C and Fortran]
programs

For information on MATLAB Coder see “MATLAB Coder”.

For information on MATLAB external interfaces see “External Code Integration”.

MATLAB Application Deployment Products

MATLAB Application Deployment Products

The following table and figure summarizes the target applications supported by each
product.

MATLAB Suite of Application Deployment Products

Product Target Standalone |Function Graphical |Web Apps |WebFigures
Applications |Libraries Apps

MATLAB Standalone |Yes Yes Yes No No
Compiler applications

and C and

C++ shared

libraries
MATLAB C# NET No Yes Yes Yes Yes
Builder™ assemblies
NE Visual

Basic COM

components
MATLAB Java No Yes Yes Yes Yes
Builder JA |packages
MATLAB Microsoft No Yes Yes No No
Builder EX |Excel add-

ns

1-5

1 Getting Started

_ AT

MATLAB Compiler

MATLAB MATLAB MATLAB
Builder EX Builder JA Builder NE

A2

Y Y
'.dll’ Excel

MATLAB Application Deployment Products

@

As this figure illustrates, each of the builder products uses the MATLAB Compiler core
code to create deployable artifacts.

1-6

Roles in Deploying as a Standalone Application

Roles in Deploying as a Standalone Application

Deploying MATLAB functionality as a standalone application is a multistep process that
may involve one or more team members. Each step requires that you perform a specific
role, as shown in Standalone Application Deployment Roles.

Standalone Application Deployment Roles

Role Knowledge Base Responsibilities
MATLAB programmer + MATLAB expert + Develop functions and
- No IT experience implements them in

MATLAB.

* Create a standalone
applications that can be used
without being integrated into
any 3rd party applications.

IT professional + Little to no MATLAB * Ensure that systems

experience using the generated

applications meet the
required specifications.

* Moderate IT experience

+ Familiarity with IT systems .

+ Install any required software
on target machines.

* Install the generated
applications on target
machines.

1-7

1 Getting Started

Roles in Deploying in a C/C++ Shared Library

Deploying MATLAB functionality through C/C++ applications is a multistep process that
may involve one or more team members. Each step requires that you perform a specific
role, as shown in Shared Library Deployment Roles.

Shared Library Deployment Roles

Role Knowledge Base Responsibilities
MATLAB programmer + MATLAB expert + Develop functions and
« Little to no C/C++ implements them in
knowledge MATLAB.

No IT experience

Create shared libraries that
are delivered to a C/C++
developer for integration into
custom applications.

C/C++ developer

Little to no MATLAB
experience

Some knowledge of IT
systems

C/C++ expert

Develop C/C++ applications
using MATLAB generated
shared libraries.

Test C/C++ applications.

Package C/C++ applications
for distribution.

IT professional

Little to no MATLAB
experience

Moderate IT experience

Familiarity with IT systems

Ensure that systems using
MATLAB application have
the required specifications.

Install any required software
on target machines.

Install MATLAB applications
on target machines.

1-8

Roles in Deploying o MATLAB Production Server

Roles in Deploying to MATLAB Production Server

Deploying MATLAB functionality using MATLAB Production Server is a multistep
process that might involve one or more team members. Each step requires fulfilling
specific roles, as shown in MATLAB Production Server Deployment Roles .

MATLAB Production Server Deployment Roles

Role

Knowledge Base

Responsibilities

MATLAB programmer

MATLAB expert

Little to no software
development experience

Lattle to no IT experience

Develop functions and
implements them in
MATLAB.

Create deployable archives
that run in MATLAB
Production Server instances.

Application developer

Little to no MATLAB

experience

Some knowledge of IT
systems

Familiarity with developing
applications using a client/
server architecture

Develop applications
using one of the MATLAB
Production Server client
APIs.

Test applications.

Package applications for
distribution.

Server administrator

Little to no MATLAB
experience

Moderate IT experience

Familiarity with IT systems

Ensure that systems running
MATLAB Production Server
instances have the required
specifications.

Install MATLAB Production
Server instances.

Tune MATLAB Production
Server instances.

Install compiled MATLAB
applications into MATLAB
Production Server instances.

Monitor MATLAB Production
Server instances.

1-9

1 Getting Started

Role

Knowledge Base

Responsibilities

Application installer

+ Little to no MATLAB
experience

* Moderate IT experience

+ Familiarity with IT systems

* Ensure that systems using
MATLAB Production Server
client applications meet the
required specifications.

+ Install any required software
on target machines.

+ Install MATLAB Production
Server client applications on
target machines.

1-10

Create and Install a Standalone Application from MATLAB Code

Create and Install a Standalone Application from MATLAB Code

In this section...
“Create a Standalone Application in MATLAB” on page 1-11
“Install a MATLAB Generated Standalone Application” on page 1-14

Create a Standalone Application in MATLAB

This example shows how to generate a standalone application from MATLAB. You
package a pre-written function that prints a magic square to a computer’s command
console. The MATLAB Compiler produces an installer that installs the standalone
application and all of the required dependencies on a target system. The target system
does not require a licensed copy of MATLAB.

1 In MATLAB, examine the MATLAB code that you want deployed as a standalone
application.

a Open magicsquare.m.
function magicsquare(n)
if ischar(n)

n=str2num(n);
end

disp(magic(n))
b At the MATLAB command prompt, enter magicsquare(5).

The output appears as follows:

17 24 1 8 15
23 5 7 14 16

4 6 13 20 22
10 12 19 21 3
11 18 25 2 9

2 Open the Application Compiler.

a On the toolstrip select the Apps tab.
b Click the arrow at the far right of the tab to open the apps gallery.
¢ Click Application Compiler to open the MATLAB Compiler project window.

1-11

1 Getting Started

-
4\ MATLAB Compiler - Untitled1prj

DEPLOYMENT

= Standalone Application
Runtime downloaded from web | MyAppInstaller_web

P e E -
. 7] Runtime included in package | MyAppInstaller_mer 410 MB Seftings Package

Application Information

I.l Application Name 10
Author Name

Email

Company

Summary

Description

Files installed with your application

B LEXE B readme.tet

P Additional Runtime Settings

P Additional Installer Options
Files required for your application to run

3 Specify the main file of the MATLAB application you want to deploy.

a

1-12

In the Main File section of the toolstrip, click the plus button.

Note: If the Main File section of the toolstrip is collapsed, you can expand it by
clicking the down arrow.

In the file explorer that opens, locate and select the magicsquare.m file.

magicsquare.mis located in matlabroot\extern\examples\compiler.
Click Open to select the file and close the file explorer.

Create and Install a Standalone Application from MATLAB Code

magicsquare.m is added to the list of main files and the plus button will be
replaced by a minus button.
4 In the Packaging Options section of the toolstrip, verify that the Runtime
downloaded from web check box is selected.

Note: If the Packaging Options section of the toolstrip is collapsed, you can expand
it by clicking the down arrow.

This option creates an application installer that automatically downloads the
MATLAB runtime and installs it along with the deployed MATLAB application.
5 Explore the main body of the MATLAB Compiler project window.

The project window is divided into the following areas:

+ Application Information — Editable information about the deployed
application. This information is used by the generated installer to populate the
installed application's metadata. See “Customize the Installer” on page 6-2.

+ Additional Installer Options — The default installation path for the generated
installer. See “Customize the Installer” on page 6-2.

Files required for your application — Additional files required by the
generated application. These files will be included in the generated application
installer. See “Manage Required Files in a Compiler Project” on page 6-6.

Files installed with your application — Files that are installed with your
application. These files include:
* Generated readme.txt

+ Generated executable for the target platform

See “Specify Files to Install with the Application” on page 6-8

Additional Runtime Settings — Platform specific options for controlling the
generated executable. See “Customize the Application’s Run Time Behavior” on
page 3-7.

6 Click Package.

The Package window opens while the application is being generated.

1-13

1 Getting Started

1-14

(4\ Package ﬁw

&
-
&

Ll

Creating Binaries...

Open cutput folder when process completes || Cancel

L -

7 Select the Open output folder when process completes check box.

When the deployment process is complete a file explorer opens and displays the
generated output.

It should contain:
for_redistribution — A folder containing the installer to distribute the
application

+ for_testing — A folder containing the raw files generated by the compiler

for_redistribution_files_only — A folder containing only the files needed
to redistribute the application

+ PackaginglLog.txt — A log file generated by the compiler.
8 Click Close on the Package window.

Install a MATLAB Generated Standalone Application

This example shows how to install the standalone application you created in “Create a
Standalone Application in MATLAB” on page 1-11.

1 Locate the MyAppInstal ler_web executable in the for_redistribution folder
created by the MATLAB Compiler.

Create and Install a Standalone Application from MATLAB Code

Note: The file extension varies depend on which platform the installer was
generated.
2 Double click the installer to run it.

s —— ==

This program will install the application. [Connection Settings]

makesgr 1.0

Cancel

Note: Any information entered in the MATLAB Compiler project window's
Application Information appears on the this window.
3 If you connect to the internet using a proxy server, enter the server's settings.

a Click Connection Settings.
b Enter the proxy server settings in the provided window.

¢ Click OK.
4 Click Next to advance to the Installation Options page.

1-15

1 Getting Started

Note: On Linux® and Mac OS X you will not have the option of adding a desktop
shortcut.
5 Click Next to advance to the Required Software page.

If asked about creating the destination folder, click Yes.

e van o e

MATLAB Compiler Runtime is required for the application to run.

]

Install MATLAB Compiler Runtime in: MATI [ﬁB
C:\Program Files\MATLAB\MATLAB Compiler Runtime W :
| Browse... | gt

Download Size: 401 MB Restore Default Folder l

MATLAE and Simulink are registered trademnarks of The MathWorks, Inc. Please see
www.mathworks.com/trademarks for a list of additional trademarks, Other preduct or brand
narnes may be trademarks or registered trademarks of their respective holders.

WARMNIMG: This program is protected by copyright law and international treaties. Copyright
1984-2012, The MathWorks, Inc, Protected by U5, and other patents. See MathWorks.com/patents

J MathWorks

Note: If you already have the correct version of the MATLAB runtime installed on
the system, this page will have a message indicating that you do not have to install a
new version.

If you receive this message, skip to step 10.
6 Click Next to advance to the License Agreement page.

1-16

Create and Install a Standalone Application from MATLAB Code

= 0 00 N

11
12

¢ Run the application using the one of the following commands:

If asked about creating the destination folder, click Yes.
Read the license agreement.

Check Yes to accept the license.

Click Next to advance to the Confirmation page.

Click Install.

The installer installs the MATLAB generated application. If needed, it also
downloads and installs the MATLAB runtime.
Click Finish.

Run your standalone application.

a Open a terminal window.
b Navigate to the folder into which you installed the application.

If you accepted the default settings it will be located in one of the following

location:

Windows® C:\Program Files\magicsquare
Mac OS X /Applications/magicsquare
Linux /usr/magicsquare

Windows application\magicsquare 5
Mac OS X
Linux J/magicsquare 5

A 5-by-5 magic square is displayed in the console:

17 24 1 8 15
23 5 7 14 16

4 6 13 20 22
10 12 19 21 3
11 18 25 2 9

1-17

1 Getting Started

Create a C/C++ Shared Library from MATLAB Code

This example shows how to create a C/C++ shared library using a MATLAB function.
You can then hand the generated shared library off to the C/C++ developer who is
responsible for integrating it into an application.

To create a C++ shared library:

1 In MATLAB, examine the MATLAB code that you want to deploy as a shared
library.

a Open addmatrix.m.
function a = addmatrix(al, a2)

a = al + az2;
b At the MATLAB command prompt, enter addmatrix(1,2).

The output appears as follows:
ans =

3
2 Open the Library Compiler.

a On the toolstrip, select the Apps tab.
b Click the arrow at the far right of the tab to open the apps gallery.
¢ Click Library Compiler to open the MATLAB Compiler project window.

1-18

Create a C/C++ Shared Library from MATLAB Code

-
4\ MATLAB Compiler - Untitled1.prj

DEPLOYMENT

Add Exported Functions

@ C++ Shared Library
(5 Excel Add-in
=

BT Acrccabl.
AFFLICATION TYPE

Application Information
‘ Library Name 1.0

Author Name
Email i
Select custom

Company
Set as default contact

Summary

Description

P Additional Installer Options
Files required for your application to run

Files installed with your application

[€] dn [« h 4 lib [4) readme.txt

‘H

[+]

m

3 In the Application Type section of the toolstrip, select C++ Shared Library from
the list.

Note: If the Application Type section of the toolstrip is collapsed, you can expand it

by clicking the down arrow.
4 Specify the MATLAB functions you want to deploy.

a Inthe Exported Functions section of the toolstrip, click the plus button.

1 Getting Started

1-20

Note: If the Exported Functions section of the toolstrip is collapsed, you can
expand it by clicking the down arrow.
b In the file explorer that opens, locate and select the addmatrix.m file.

addmatrix.mis located in matlabroot\extern\examples\compiler.
¢ Click Open to select the file and close the file explorer.

addmatrix.m is added to the list of files and a minus button appears under the
plus button.
In the Packaging Options section of the toolstrip, verify that the Runtime
downloaded from web check box is selected.

Note: If the Packaging Options section of the toolstrip is collapsed, you can expand
it by clicking the down arrow.

This option creates an application installer that automatically downloads the
MATLAB runtime and installs it along with the deployed shared library.
Explore the main body of the MATLAB Compiler project window.

The project window is divided into the following areas:

+ Application Information — Editable information about the deployed
application. This information is used by the generated installer to populate the
installed application's metadata. See “Customize the Installer” on page 6-2.

Additional Installer Options — The default installation path for the generated
installer. See “Customize the Installer” on page 6-2.

Files required for your application — Additional files required by the
generated application. These files will be included in the generated application
installer. See “Manage Required Files in a Compiler Project” on page 6-6.

Files installed with your application — Files that are installed with your
application. These files include:

* readme.txt
- _hfile
< _dll file

Create a C/C++ Shared Library from MATLAB Code

+ _libfile

See “Specify Files to Install with the Application” on page 6-8.
7 Click Package.

The Package window opens while the library is being generated.

r-d'!. Package @W

e
L=
e

101

it = L

Creating Binaries...

["] Open output folder when process completes |

L -

8 Select the Open output folder when process completes check box.

When the deployment process is complete, a file explorer opens and displays the
generated output.

It should contain:
for_redistribution — A folder containing the installer to distribute the
library

+ for_testing — A folder containing the raw files generated by the compiler

for_redistribution_files_only — A folder containing only the files needed
to redistribute the library

+ PackaginglLog.txt — A log file generated by the compiler.
9 Click Close on the Package window.
10 Verify the contents of the generated output:

+ for_redistribution — A folder containing the installer to distribute the
standalone application

1-21

1 Getting Started

1-22

+ for_testing — A folder containing the raw files generated by the compiler

+ for_redistribution_files_only — A folder containing only the files needed
to redistribute the application

PackaginglLog.txt — A log file generated by the compiler.
To follow up on this example:

* Try creating a shared library that consists of more than one function.

* Try “Integrate a C/C++ Shared Library into an Application” on page 1-23

Integrate a C/C++ Shared Library into an Application

Integrate a C/C++ Shared Library into an Application

This example shows how to call a C++ shared library built with MATLAB Compiler from
a C++ application.

To create a C++ application that calls a MATLAB generated shared library:
1 Install the MATLAB runtime and shared library files in one of the following ways.

Running the installer generated by MATLAB. It is located in the
for_redistribution folder of the deployment project.

Doing so automatically installs the MATLAB runtime from the Web and places
the shared library folders onto your computer.

Manually installing the MATLAB runtime and the generated shared libraries
onto you development system.

You can download the MATLAB runtime installer from http://
www.mathworks.com/products/compiler/mcr. The generated shared libraries and
support files are located in the MATLAB deployment project's For_testing
folder.

2 In the folder containing the generated shared libraries, create a new file called

addmatrix.cpp.
3 Using a text editor, open addmatrix.cpp.
4 Place the following as the first line in the file.

#include "addmatrix.h"

Inserting this statement includes the generated header file for the MATLAB shared
library.
5 Add the following main() function.

int mainQ)

{

mclmcrinitialize();
return mclRunMain((mcIMainFcnType)run_main,0,NULL);

}
The main() function does the following:

mcImcrinitialize() initializes the MATLAB runtime so that it is ready to
load the MATLAB code required to execute the deployed function.

1-23

http://www.mathworks.com/products/compiler/mcr
http://www.mathworks.com/products/compiler/mcr

1 Getting Started

1-24

+ mclRunMain() creates a new thread and runs the MATLAB generated code in it.
Add a run_main() function to the application.

int run_main(int argc, char **argv)

{
Add the following code to the top of the run_main() function.

if (ImclinitializeApplication(NULL,0))
{

std::cerr << "could not initialize the application properly"
<< std::endl;
return -1;

}

The mclInitializeApplication() function sets up the application state for the
MATLAB runtime instance created in the application.
Add the following code below the code initializing the application.

if('addmatrixInitialize())
{

std::cerr << "could not initialize the library properly”
<< std::endl;
return -1;

}

The addmatrixInitialize() function loads the required MATLAB code into the
MATLAB runtime.

Add a try/catch block after the block for addmatrixinitialize().

In the try section of the try/catch block, add the following code.

// Create input data

double data[] = {1,2,3,4,5,6,7,8,9};
mwArray inl(3, 3, mxDOUBLE_CLASS, mxREAL);
mwArray in2(3, 3, mxDOUBLE_CLASS, mxREAL);
inl._SetData(data, 9);

in2_SetData(data, 9);

// Create output array
mwArray out;

The code creates three instances of the mwArray class, inl, in2, and out. inl
and In2 passed as input parameters to the addmatirx() function generated by

Integrate a C/C++ Shared Library into an Application

11

12

13

14

MATLAB. out is the value returned from the addmatirx() function. mwArray is a
special class used by MATLAB generated code to facilitate the use of complex arrays.
After the code that initializes the parameters, add the following code to call the
addmatirx() function and display the results.

addmatrix(1, out, inl, in2);

std::cout << "The value of added matrix is:" << std::endl;
std::cout << out << std::endl;
Add the following catch section to the try/catch block.

catch (const mwException& e)

{

std::cerr << e.what() << std::endl;
return -2;

}
catch (...)

{

std::cerr << "Unexpected error thrown" << std::endl;
return -3;

}

The first catch clause catches the MATLAB generated mwException. This
exception is thrown by the MATLAB code running in the MATLAB runtime.

The second catch clause catches any other exceptions that may be thrown.
Add the following after the try/catch block to terminate the MATLAB runtime and
clean up any resources it was using.

addmatrixTerminate();

mclTerminateApplication();
return O;

addmatrixTerminiate() releases the resources used by the generated MATLAB
code.

mclTerminateApplication() releases all state and resources used by the
MATLAB runtime for the application.

Save the C++ file.

The completed C++ file should resemble the following.

#include "addmatrix.h"

1-25

1 Getting Started

int run_main(int argc, char **argv)
{
if (ImclinitializeApplication(NULL,0))
{
std::cerr << "could not initialize the application properly"
<< std::endl;
return -1;

3
if('addmatrixInitialize())
{
std::cerr << "could not initialize the library properly"

<< std::endl;
return -1;

b
try
{
// Create input data
double data[] = {1,2,3,4,5,6,7,8,9};
mwArray inl1(3, 3, mxDOUBLE_CLASS, mxREAL);
mwArray in2(3, 3, mxDOUBLE_CLASS, mxREAL);
inl_SetData(data, 9);
in2_SetData(data, 9);
// Create output array
mwArray out;
// Call the library function
addmatrix(l, out, inl, in2);
std::cout << "The value of added matrix is:" << std::endl;
std::cout << out << std::endl;
b
catch (const mwException& e)
{
std::cerr << e.what() << std::endl;
return -2;
catch (...)
{
std::cerr << "Unexpected error thrown" << std::endl;
return -3;
b

1-26

Integrate a C/C++ Shared Library into an Application

addmatrixTerminate();
mclTerminateApplication();
return O;

}

int mainQ)

{

mclmcrinitialize();
return mclRunMain((mcIMainFcnType)run_main,0,NULL);

}

15 Use the system's command line to navigate to the folder where you installed the C++
shared library.

16 Use mbui ld to compile and link the application.

mbuild addmatrix.cpp addmatrix.lib
17 From the system's command prompt, run the application.

addmatrix
The value of added matrix is:
2 8 14

4 10 16
6 12 18

To follow up on this example:

* Try installing the new application on a different computer.
* Try building an installer for the application.

* Try integrating a shared library that consists of more than one function.

1-27

1 Getting Started

Create a Deployable Archive for MATLAB Production Server

1-28

This example shows how to create a deployable archive for MATLAB Production Server
using a MATLAB function. You can then hand the generated archive to a system
administrator who will deploy it into MATLAB Production Server.

To create a deployable archive:
1 In MATLAB, examine the MATLAB code that you want to deploy.
a Open addmatrix.m.
function a = addmatrix(al, a2)

a = al + az2;
b At the MATLAB command prompt, enter addmatrix(1,2).

The output appears as follows:
ans =

3
2 Open the Production Server Compiler.

a On the toolstrip, select the Apps tab.
b Click the arrow on the far right of the tab to open the apps gallery.
¢ Click Production Server Compiler.

Create a Deployable Archive for MATLAB Production Server

4\ MATLAB Compiler - Untithed Lprj o | B [|

Archive Information

Campaonent Name

Files required for your archive to run

Files installed with your application

] et #] readme.tst

¥ Additional Runtime Settings

3 Inthe Application Type section of the toolstrip, select Deployable Archive from
the list.

Note: If the Application Type section of the toolstrip is collapsed, you can expand it
by clicking the down arrow .
4 Specify the MATLAB functions you want to deploy.

a Inthe Exported Functions section of the toolstrip, click the plus button.

1-29

1 Getting Started

Note: If the Exported Functions section of the toolstrip is collapsed, you can
expand it by clicking the down arrow.

b Using the file explorer, locate and select the addmatrix.m file.

addmatrix.mis located in matlabroot\extern\examples\compiler.
¢ Click Open to select the file and close the file explorer.

addmatrix.m is added to the field. A minus button will appear below the plus
button.
5 Inthe Packaging Options section of the toolstrip, verify that the Runtime
downloaded from web check box is selected.

Note: If the Packaging Options section of the toolstrip is collapsed you can expand
it by clicking the down arrow.

This option creates an application installer that automatically downloads the
MATLAB runtime and installs it.
6 Explore the main body of the project window.

The project window is divided into the following areas:

+ Application Information — Editable information about the deployed archive.
This information is used by the generated installer to populate the installed
application's metadata. See “Customize the Installer”.

Additional Installer Options — The default installation path for the generated
installer. See “Customize the Installer”.

Files required for your application — Additional files required by the
archive. These files will be included in the generated archive. See “Manage
Required Files in a Compiler Project”.

Files installed with your application — Files that are installed with your
archive. These files include:

* readme.txt
- _ctffile

See “Specify Files to Install with the Application”.

1-30

Create a Deployable Archive for MATLAB Production Server

7 Click Package.

The Package window opens while the library is being generated.

(4\ Package ﬁw

“r
L=
“r

101

011 = | d

Creating Binaries...

[] Open output folder when process completes

ty -

8 Select the Open output folder when process completes check box.

When the deployment process is complete, a file explorer opens and displays the
generated output.
9 Verify the contents of the generated output:

for_redistribution — A folder containing the installer to redistribute the
archive to the system administrator responsible for the MATLAB Production
Server

+ for_testing — A folder containing the raw files generated by the compiler

+ PackaginglLog.txt — A log file generated by the compiler.
10 Click Close on the Package window.

To lean more about MATLAB Production Server see “MATLAB Production Server”

1-31

1 Getting Started

For More Information

1-32

About This

Look Here

Detailed information on
standalone applications

“Deploying Standalone Applications” on page 14-3

Creating libraries

“Integrate C Shared Libraries” on page 15-8
“Integrate C++ Shared Libraries” on page 15-12

Using the mcc command

“mcec Command Line Arguments Grouped by Task” on
page A-7

Troubleshooting

“Common Issues” on page 16-3
“Troubleshoot mbuild” on page 16-15
“MATLAB Compiler” on page 16-17
“Deployed Applications” on page 16-20

Installation and Configuration

* “Install an ANSI C or C++ Compiler” on page 2-2
+ “Configuring Your Options File with mbuild” on page 2-5

+ “Solving Installation Problems” on page 2-8

2

Installation and Configuration

Install an ANSI C or C++ Compiler

2-2

Install supported ANSI® C or C++ compiler on your system. Certain output targets
require particular compilers.

To install your ANSI C or C++ compiler, follow vendor instructions that accompany your
C or C++ compiler.

Note If you encounter problems relating to the installation or use of your ANSI C or C++
compiler, consult your C or C++ compiler vendor.

Supported ANSI C and C++ Windows Compilers

Use one of the following C/C++ compilers that create Windows dynamically linked
libraries (DLLs) or Windows applications:

Microsoft Visual C++* (MSVC).
The only compiler that supports the building of COM objects and Excel plug-ins is

Microsoft Visual C++.

The only compiler that supports the building of .NET objects is Microsoft Visual
C# Compiler for the Microsoft .NET Framework.

Microsoft Windows SDK 7.1

See the MATLAB Builder NE Release Notes for a list of supported .NET Framework
versions.

Note: For an up-to-date list of all the compilers supported by MATLAB and MATLAB
Compiler, see the MathWorks Technical Support notes at http://www.mathworks.com/
support/compilers/current_release/

Supported ANSI C and C++ UNIX Compilers

MATLAB Compiler software supports the native system compilers on:

Linux

http://www.mathworks.com/support/compilers/current_release/
http://www.mathworks.com/support/compilers/current_release/

Install an ANSI C or C++ Compiler

* Linux x86-64
+ MacOSX

MATLAB Compiler software supports gcc and g++.

Common Installation Issues and Parameters

When you install your C or C++ compiler, you sometimes encounter requests for
additional parameters. The following tables provide information about common issues

occurring on Windows and UNIX" systems where you sometimes need additional input or

consideration.

Windows Operating System

Issue

Comment

Installation options

(Recommended) Full installation.

Installing debugger files

For the purposes of MATLAB Compiler, it
1s not necessary to install debugger (DBG)
files.

Microsoft Foundation Classes (MFC) Not needed.
16-bit DLLs Not needed.
ActiveX® Not needed.

Running from the command line

Make sure that you select all relevant
options for running your compiler from the
command line.

Updating the registry

If your installer gives you the option of
updating the registry, perform this update.

Installing Microsoft Visual C++ Version 6.0

To change the install location of the
compiler, change the location of the Common
folder. Do not change the location of the
VC98 folder from its default setting.

UNIX Operating System

Issue

Comment

Determine which C or C++ compiler is
available on your system.

See your system administrator.

2-3

2 Installation and Configuration

Determine the path to your C or C++ See your system administrator.
compiler.
Installing on Maci64 Install X Code from installation DVD.

2-4

Configuring Your Options File with mbuild

Configuring Your Options File with mbuild

In this section...
“What Is mbuild?” on page 2-5
“Locating and Customizing the Options File” on page 2-5

What Is mbuild?

Running the mbui Id configuration script creates an option file that:

+ Sets the default compiler and linker settings for each supported compiler.
+ Allows you to changes compilers or compiler settings.

* Builds (compiles) your application.

Note: The following mbui Id examples apply only to the 32-bit version of MATLAB.

About mbuild and Linking

Static linking is not an option for applications generated by MATLAB Compiler.
Compiled applications all must link against MCLMCRRT. This shared library explicitly
dynamically loads other shared libraries. You cannot change this behavior on any
platform.

Locating and Customizing the Options File

* “Locating the Options File” on page 2-5
+ “Changing the Options File” on page 2-6

Locating the Options File
Windows Operating System
To locate your options file on Windows, mbui Id searches the following locations:

* Current folder
* The user profile folder

mbui Id uses the first occurrence of the options file it finds. If it finds no options file,
mbui Id searches your machine for a supported C compiler and uses the factory default

2-5

2

Installation and Configuration

2-6

options file for that compiler. If mbui Id finds multiple compilers, it prompts you to select
one.

The Windows user profile folder contains user-specific information such as desktop
appearance, recently used files, and Start menu items. The mbui Id utility stores its
options files, compopts._bat, in a subfolder of your user profile folder, named
Application Data\MathWorks\MATLAB\current release.

Under Windows with user profiles enabled, your user profile folder is %dwindir%
\Profiles\username. However, with user profiles disabled, your user profile folder
is %Wwindir%. You can determine if user profiles are enabled by using the Passwords
control panel.

UNIX Operating System
To locate your options file on UNIX, mbui Id searches the following locations:

* Current folder
* $HOME/ .matlab/current_release
« matlabroot/bin

mbui Id uses the first occurrence of the options file it finds. If mbui Id finds no options
file, an errors message appears.

Changing the Options File

Although it is common to use one options file for all of your MATLAB Compiler related
work, you can change your options file at anytime. The setup option resets your default
compiler to use the new compiler every time. To reset your C or C++ compiler for future
sessions, enter:

mbuild -setup

Modifying the Options File on Windows

You can use the -setup option to change your options file settings on Windows. The -
setup option copies the appropriate options file to your user profile folder.

To modify your options file on Windows:

1 Enter mbuild -setup to make a copy of the appropriate options file in your local
area.

Configuring Your Options File with mbuild

2 Edit your copy of the options file in your user profile folder to correspond to your
specific needs, and save the modified file.

After completing this process, mbui Id uses the new options file every time with your
modified settings.

Modifying the Options File on UNIX

You can use the setup option to change your options file settings on UNIX. For example,
to change the current linker settings, use the setup option.

The setup option creates a user-specific matlab folder in your home folder and copies
the appropriate options file to the folder.

Do not confuse these user-specific matlab folders with the system matlab folder.
To modify your options file on the UNIX:

1 Usembuild -setup to make a copy of the appropriate options file in your local
area.

2 Edit your copy of the options file to correspond to your specific needs, and save the
modified file.

2-7

2 installation and Configuration

Solving Installation Problems

You can contact MathWorks:

Via the Web at www.mathworks.com. On the MathWorks home page, click My
Account to access your MathWorks Account, and follow the instructions.

Via email at service@mathworks.com.

2-8

http://www.mathworks.com

Deploying Standalone Applications

“Package Standalone Application with Application Compiler App” on page 3-2
“Customize the Application’s Run Time Behavior” on page 3-7

“Compile a Standalone Application from the Command Line” on page 3-8
“Working with Standalone Applications and Arguments” on page 3-10

“Deploy Standalone Applications with the Parallel Computing Toolbox” on page
3-14

“Run a Mac OS X Application” on page 3-17

3 Deploying Standalone Applications

Package Standalone Application with Application Compiler App

To compile MATLAB code into a standalone application:

1 Open the Application Compiler.

a
b

C

On the toolstrip select the Apps tab.
Click the arrow at the far right of the tab to open the apps gallery.
Click Application Compiler to open the MATLAB Compiler project window.

- .
4\ MATLAR Compiler - Untitlad1prj (o o |

DEPLOYMENT

v,
Runtime downloaded from web | MyAppInstaller_web 5 MB @ M

71 Runtime included in package | My~ppInstaller_mer 410 MB Seftings Package

= Standalone Application

Add main file

MAIN FILE

APPLICATION TYPE

Application Infermation

Lﬂ Application Name 10

Author Name
Email Select custom splash screen

Company

Summary

B LEXE @ readme.txt

‘I

b Additional Runtime Settings

Note: To open an existing project, select it from the MATLAB Current Folder
panel.

Package Standalone Application with Application Compiler App

Note: You can also launch the standalone compiler using the
applicationCompi ler function.
Specify the main file of the MATLAB application you want to deploy.

a In the Main File section of the toolstrip, click the plus button.

Note: If the Main File section of the toolstrip is collapsed, you can expand it by
clicking the down arrow.
In the file explorer that opens, locate and select the MATLAB file.

¢ Click Open to select the file and close the file explorer.

The selected file’s name is added to the list of main files and the plus button will
be replaced by a minus button. The file name is used as the default application
name.
In the Packaging Options section of the toolstrip, specify how the installer will
deliver the MATLAB runtime with the application.

Note: If the Packaging Options section of the toolstrip is collapsed, you can expand
it by clicking the down arrow.

You can select one or both of the following options:

Runtime downloaded from web — Generates an installer that downloads the
MATLAB runtime installer from the Web.

Runtime included in package — Generates an installer that includes the
MATLAB runtime installer.

Note: Selecting both options creates two installers.

Regardless of what options are selected the generated installer scans the target
system to determine if there is an existing installation of the appropriate MATLAB
runtime. If there is not, the installer installs the MATLAB runtime.

Specify the name of any generated installers.

3-3

3 Deploying Standalone Applications

In the Application Information and Additional Installer Options sections of
the compiler, customize the look and feel of the generated installer.

You can change the information used to identify the application data used by the
installer:

Splash screen

Note: On Windows, the splash screen will be displayed when the compiled
application starts in addition to when the installer runs.

+ Application icon
+ Application version
+ Name and contact information of the application’s author
* Brief summary of the application’s purpose
Detailed description of the application

You can also change the default location into which the application is installed and
provide some notes to the installer.

All of the provided information is displayed as the installer runs.
For more information see “Customize the Installer” on page 6-2.

In the Files required for your application to run section of the compiler, verify
that all of the files required to run the MATLAB application are listed.

Note: These files are compiled into the generated binaries along with the main file.

Note: For Standalone Applications with MapReduce, you can find the map function
and the reduce function in the current directory. If the map function and the

reduce function are not available in current directory, you must include them in the
MATLAB search path.

In general the built-in dependency checker automatically populates this section with
the appropriate files. However, you can manually add any files it missed.

Package Standalone Application with Application Compiler App

9

For more information see “Manage Required Files in a Compiler Project” on page
6-6.

In the Files installed with your application section of the compiler, verify that
any additional non-MATLAB files you want installed with the application are listed.

Note: These files are placed in the applications folder of the installed application.

This section automatically lists:

+ Generated executable
(Linux) Shell script for launching the application

Readme file

You can manually add files to the list. Additional files can include documentation,
sample data files, and examples to accompany the application.

For more information see “Specify Files to Install with the Application” on page
6-8.

In the Additional Runtime Settings section of the compiler, specify some of the
advanced runtime behaviors for the application.

These behaviors include:

+ (Windows) if a command window is required to run the application

+ if the application generates a log file

For more information see “Customize the Application’s Run Time Behavior” on page
3-7.

Click Settings to customize the flags passed to the compiler and the folders where
the generated files are written.

10 Click Package to compile the MATLAB code and generate the installers.
11 Verify the contents of the generated output:

+ Tor_redistribution — A folder containing the installer to distribute the
standalone application

+ for_testing — A folder containing the raw files generated by the compiler

3-5

3 Deploying Standalone Applications
ploying PP

+ FTor_redistribution_files_only — A folder containing only the files needed
to redistribute the application

+ PackaginglLog.txt — A log file generated by the compiler

Related Examples
. “Create Standalone Application to Run Against Hadoop Using mcc” on page 9-9

3-6

Customize the Application’s Run Time Behavior

Customize the Application’s Run Time Behavior

In Additional Runtime Settings, you can change the following run-time behaviors for
the compiled application:

* On Windows if a command window is opened when you double-click the application
from the file explorer

Note: If the application generates output to the console or requires command line
input, you must unselect this option.

+ If the application generates a MATLAB log file

By default, all of these behaviors are set to false. When you double-click a compiled
application in the Windows file explorer, the application’s window opens without a
command prompt and will not generate a log file.

3-7

3 Deploying Standalone Applications

Compile a Standalone Application from the Command Line

3-8

In this section...

“Execute Compiler Projects with deploytool” on page 3-8

“Compile a Standalone Application with mcc” on page 3-8

You can compile standalone applications from both the MATLAB command line and the
system terminal command line:

+ deploytool invokes the compiler app to execute a presaved compiler project

* mcc invokes the raw compiler

Execute Compiler Projects with deploytool

The deploytool command has two flags to invoke the compiler without opening a
window:

* -build project name — Invoke the compiler to build the project and not generate
an installer.

+ -package project_name — Invoke the compiler to build the project and generate
an installer.

For example, deploytool -package magicsquare generates the binary files defined
by the magicsquare project and packages them into an installer that you can distribute
to others.

Compile a Standalone Application with mcc

The mcc command invokes the raw compiler and provides fine-level control over the
compilation of the application. It, however, cannot package the results in an installer.

To invoke the compiler to generate an application use either the -m or the-e flag with

mcc. Both compile a MATLAB function and generate a standalone executable. The -m

flag creates a standard executable that can be run from a command line. The-e flag is
a Windows-specific option that generates an executable that does not open a command
prompt when double-clicked from the Windows file explorer.

The following mcc options can be used for compiling standalone applications.

Compile a Standalone Application from the Command Line

Option Description

-W main -T link:exe Generate a standard executable.
Equivalent to using —m.

-W WinMain -T link:exe Generate an executable that does not open
a command prompt when double-clicked
from the Windows file explorer. Equivalent
to using -e.

-a filePath Add any files on the path to the generated
binaries.
-d outFolder Specify the folder where the results of

compilation are written.

-0 fileName Specify the name of the generated
executable file.

3-9

3 Deploying Standalone Applications

Working with Standalone Applications and Arguments

3-10

In this section...

“Overview” on page 3-10

“Passing File Names, Numbers or Letters, Matrices, and MATLAB Variables” on page
3-10

“Running Standalone Applications that Use Arguments” on page 3-11

Overview

You usually create a standalone to simply run the application without passing or
retrieving any arguments to or from it.

However, arguments can be passed to standalone applications created using MATLAB
Compiler in the same way that input arguments are passed to any console-based

application.

The following are example commands used to execute an application called fi lename
from a DOS or Linux command prompt with different types of input arguments.

Passing File Names, Numbers or Letters, Matrices, and MATLAB Variables

To Pass.... Use This Syntax.... Notes

A file named helpTfile filename helpfile

Numbers or letters filename 1 2 3 a b ¢ |Do not use commas or other
separators between the
numbers and letters you

pass.
Matrices as input filename "[1 2 3]" Place double quotes around
"[4 5 6]" input arguments to denote a
blank space.
MATLAB variables for k=1:10 To pass a MATLAB variable

cmd = [“filename °,num2stto a program as input, you
system(cmd) ; must first convert it to a
end string.

Working with Standalone Applications and Arguments

Running Standalone Applications that Use Arguments

You call a standalone application that uses arguments from MATLAB with any of the
following commands:

* SYSTEM
+ DOS
* UNIX

To pass the contents of a MATLAB variable to the program as an input, the variable
must first be converted to a string. For example:

Using SYSTEM, DOS, or UNIX

Specify the entire command to run the application as a string (including input
arguments). For example, passing the numbers and letters 1 2 3 a b c could be
executed using the SYSTEM command, as follows:

system("filename 1 2 3 a b c*)

Using the ! (bang) Operator

You can also use the ! (bang) operator, from within MATLAB, as follows:
Ifilename 1 2 3 a b c

When you use the ! (bang) operator, the remainder of the input line is interpreted as the
SYSTEM command, so it is not possible to use MATLAB variables.

Using a Windows System

To run a standalone application by double clicking on it, you create a batch file that calls
the standalone application with the specified input arguments. For example:

rem This is main.bat file which calls
rem Filename.exe with input parameters

filename “[1 2 3]" "[4 5 6]"

@echo off
pause

3-11

3 Deploying Standalone Applications

The last two lines of code in main.bat are added so that the window displaying your
output stays open until you press a key.

Once you save this file, you run your code with the arguments specified above by double
clicking on the icon for main.bat.

Using a MATLAB File You Plan to Deploy

When running MATLAB files that use arguments that you also plan to deploy with
MATLAB Compiler, keep the following in mind:

* The input arguments you pass to your executable from a system prompt will be
received as string input. Thus, if you expect the data in a different format (for
example, double), you must first convert the string input to the required format in
your MATLAB code. For example, you can use STR2NUM to convert the string input to
numerical data.

* You cannot return values from your standalone application to the user. The only way

to return values from compiled code is to either display it on the screen or store it in a
file.

In order to have data displayed back to the screen, do one of the following:

* Unsuppress the commands that yield your return data. Do not use semicolons to
unsuppress.

* Use the DISP command to display the variable value, then redirect the outputs to
other applications using redirects (the > operator) or pipes (] |) on non-Windows
systems.

Taking Input Arguments and Displaying to a Screen Using a MATLAB File

Here are two ways to use a MATLAB file to take input arguments and display data to the
screen:

Method 1

function [x,y]=foo(z);
if ischar(z)

z=str2num(z);
else

3-12

Method 2

z=z;
end

x=2*z % Omit the semicolon after calculation to display the value on the screen
y=z"2;

disp(y) %Use DISP command to display the value of a variable explicitly

Method 2

function [x,y]=foo(z);

if isdeployed

z=str2num(z);

end

x=2*z % Omit the semicolon after calculation to display the value on the screen
y=z"2;

disp(y) % Use DISP command to display the value of a variable explicitly

3-13

3 Deploying Standalone Applications

Deploy Standalone Applications with the Parallel Computing
Toolbox

3-14

In this section...

“Standalone Applications with a Profile Passed at Run-Time” on page 3-14
“Standalone Applications with an Embedded Profile” on page 3-15

Standalone Applications with a Profile Passed at Run-Time

When using the Parallel Computing Toolbox, you can pass the cluster profile to the
compiled application at runtime. The steps to do so are similar to using a standard
compiled application. There are only a few extra steps:

1
2

Write Parallel Computing Toolbox code.
Use the Cluster Profile Manager’s Export button to export the desired profiles.

The Cluster Profile Manager can be opened by clicking Parallel > Manage
Cluster Profiles.
Compile the application.

Note: If you are using the GPU feature of Parallel Computing Toolbox, you need to
manually add the PTX and CU files.

Write a shell script that calls the application using the -mcruserdata
ParallelProfile:profile flag.

myApp -mcruserdata ParallelProfile:C:\work9b\pctdeploytool\myprofile_settings

profile should be specified as the full path name for the cluster profile file.

Note: As of R2012a, Parallel Configurations and MAT files have been replaced with
Parallel Profiles. For more information, see the release notes for the Deployment
products and Parallel Computing Toolbox.

To use existing MAT files and ensure backward compatibility with this change,
issue a command such as the following, in the above example:

pct_Compiled.exe 200 -mcruserdata

Deploy Standalone Applications with the Parallel Computing Toolbox

ParallelProfile:C:\work9b\pctdeploytool\pct_Compiled\distrib\myconfig.mat

If you continue to use MAT files, remember to specify the full path to the MAT
file.
Distribute the following files to people wishing to run the application:

the generated installer
the cluster profile

the script that starts the application using the cluster profile

Note: Users of the application must have access to the cluster specified in the profile.

Standalone Applications with an Embedded Profile

When using the Parallel Computing Toolbox, you can include the cluster profile with
the compiled application. The steps to do so are similar to using a standard compiled
application. There are only a few extra steps:

1
2

Write Parallel Computing Toolbox code.
Write a second MATLAB function that uses setmcruserdata to load the cluster
profile and pass it to the MATLAB runtime.

function run_parallel funct
setmcruserdata("ParallelProfile™, "profile");
a = parallel funct

end

Use the Cluster Profile Manager’s Export button to export the desired profile.

The name used to save the cluster profile should match the profile value used in
setmcruserdata.

The Cluster Profile Manager can be opened by clicking Parallel > Manage
Cluster Profiles.
Compile the application.

a Usethe run_parallel funct as the main file for the application.

b Include the cluster profile in the Files required for your application field of
the compiler app.

¢ Include the .mfile for parallel funct in the Files required for your
application field of the compiler app.

3-15

3 Deploying Standalone Applications

Note: If you are using the GPU feature of Parallel Computing Toolbox, you need to
manually add the PTX and CU files.
5 Distribute the generated installer to anyone interested in using the application.

Note: Users of the application must have access to the cluster specified in the profile.

Related Examples
. “Create Standalone Application to Run Against Hadoop Using mcc”

3-16

Run a Mac OS X Application

Run a Mac OS X Application

In this section...

“Overview” on page 3-17

“Installing the Macintosh Application Launcher Preference Pane” on page 3-17
“Configuring the Installation Area” on page 3-17

“Launching the Application” on page 3-20

Overview

Macintosh graphical applications, launched through the Mac OS X finder utility, require
additional configuration if MATLAB software or the MATLAB runtime were not installed
in default locations.

Installing the Macintosh Application Launcher Preference Pane

Install the Macintosh Application Launcher preference pane, which gives you the ability
to specify your installation area.

1 Inthe Mac OS X Finder, navigate to install area/toolbox/compiler/maci64.
2 Double-click on MW_App_Launch.prefPane.

Note: The Macintosh Application Launcher manages only user preference settings. If
you copy the preferences defined in the launcher to the Macintosh System Preferences
area, the preferences are still manipulated in the User Preferences area.

Configuring the Installation Area
Once the preference pane is installed, you configure the installation area.

1 Launch the preference pane by clicking on the apple logo in the upper left corner of
the desktop.

2 Click on System Preferences. The MW_App_Launch preference pane appears in
the Other area.

3-17

3 Deploying Standalone Applications

Using user preferences area

MathWorks install areas:

Imike/software/MATLAB/MATLAB_Compiler_Runtime/v712

[———————————— KIS

(Add Install Area) (Remove Install Area) (Move Up) (Move Down)

3 Click Add Install Area to define an installation area on your system.
4 Define the default installation path by browsing to it.
5 Click Open.

3-18

Run a Mac OS X Application

Oy O O MW_App_Launch
| <[> || Showall Q
Using user preferences area
MathWorks install areas:
8@ e Open
/mathworlk)
[«/»](e8[=]m] [Mathworks.06.23 B (Qsearc
DEVICES T_ - Name & Date Modified
Lmike.. | 6/23/09 9:23 AM
F iDisk | ubmit 6/26/09 10:38 AM
o | ubmit 6/25/09 7:41 AM
SHARED | ubmit 6/29/09 12:27 PM
C__——= manmn. | chertd.submit 6/29/09 12:26 PM
fe beb .. I erv2.submit Yesterday, 3:08 PM
@ All... : auncherv2 submit Yesterday, 1:39 PM
E {| » £ matlab 7/22/09 12:56 PM
| » [toolbox 6/24/09 1:06 PM
|
|
W
PLACES 1
E Desktop v
fr_ Cancel "' (Open \J
A

Modifying Your Installation Area

Occasionally, you remove an installation area, define additional areas or change the
order of installation area precedence.

You can use the following options in MathWorks® Application Launcher to modify your
installation area:

+ Add Install Area — Defines the path on your system where your applications install
by default.
* Remove Install Area — Removes a previously defined installation area.

+ Move Up — After selecting an installation area, click this button to move the defined
path up the list. Binaries defined in installation areas at the top of the list have
precedence over all succeeding entries.

3-19

3 Deploying Standalone Applications

3-20

+ Move Down — After selecting an installation area, click this button to move the
defined path down the list. Binaries defined in installation areas at the top of the list
have precedence over all succeeding entries.

+ Apply — Saves changes and exits MathWorks Application Launcher.
* Revert — Exits MathWorks Application Launcher without saving any changes.

Launching the Application

When you create a Macintosh application, a Macintosh bundle is created. If the
application does not require standard input and output, launch the application by
clicking on the bundle in the Mac OS X Finder utility.

The location of the bundle is determined by whether you use mcc or
applicationCompiler to build the application:

+ If you use applicationCompi ler, the application bundle is placed in the compiled
application's for_redistribution folder.

+ If you use mcc, the application bundle is placed in the current working directory or in
the output directory as specified by the mcc -0 switch.

Deploying C/C++ Shared Libraries

“Compile a C/C++ Shared Library with the Library Compiler App” on page 4-2
“Compile a C/C++ Shared Library from the Command Line” on page 4-6
“What Are Wrapper Files?” on page 4-8

“Distributing Applications That Call MATLAB Based Shared Libraries” on page
4-9

“Distribute Shared Libraries to Be Used with Other Projects” on page 4-10

4 Deploying C/C++ Shared Libraries

Compile a C/C++ Shared Library with the Library Compiler App

To compile MATLAB code into a shared library:
1 Open the Library Compiler.

a On the toolstrip select the Apps tab.
b Click the arrow at the far right of the tab to open the apps gallery.
¢ Click Library Compiler to open the MATLAB Compiler project window.

4\ MATLAB Compiler - Untitled1.prj

DEPLOYMENT e o,

Add Exported Functions lil Runtime downloaded from web | MyApplnstaller_web |5 MB

@ C++ Shared Library
() Excel Add-in
=1

BIET Acccalal.

APPLICATION TYPE MAIN FILE

Application Information
‘ Library Name 1.0

Author Name

mat Select custom splash screen
Company
Set as default contact

Summary

m

Description

P Additional Installer Options
Files required for your application to run

Files installed with your application L

[€] an [€] h) lib [#) readme.txt

H‘H
4

Compile a C/C++ Shared Library with the Library Compiler App

Note: To open an existing project, select it from the MATLAB Current Folder
panel.

Note: You can also launch the library compiler using the lHibraryCompiler
function.
In the Application Type section of the toolstrip, select either C Shared Library or
C++ Shared Library.

Note: If the Application Type section of the toolstrip is collapsed, you can expand it
by clicking the down arrow.
Specify the MATLAB files you want deployed in the shared library.

a In the Exported Functions section of the toolstrip, click the plus button.

Note: If the Exported Functions section of the toolstrip is collapsed, you can
expand it by clicking the down arrow.
In the file explorer that opens, locate and select one or more MATLAB files.

¢ Click Open to select the file and close the file explorer.

The names of the selected files are added to the list and a minus button appears
below the plus button. The name of the first file listed is used as the default
application name.
In the Packaging Options section of the toolstrip, specify how the installer will
deliver the MATLAB runtime with the shared library.

Note: If the Packaging Options section of the toolstrip is collapsed, you can expand
it by clicking the down arrow.

You can select one or both of the following options:

Runtime downloaded from web — Generates an installer that downloads the
MATLAB runtime installer from the Web.

Runtime included in package — Generates an installer that includes the
MATLAB runtime installer.

4-3

4 Deploying C/C++ Shared Libraries

4-4

Note: Selecting both options creates two installers.

Regardless of the options selected the generated installer scans the target system to
determine if there is an existing installation of the appropriate MATLAB runtime. If
there is not, the installer installs the MATLAB runtime.

Specify the name of any generated installers.

In the Application Information and Additional Installer Options sections of
the compiler, customize the look and feel of the generated installer.

You can change the information used to identify the application data used by the
installer:
Splash screen
+ Installer icon
+ Library version
* Name and contact information of the library’s author
* Brief summary of the library’s purpose
Detailed description of the library

You can also change the default location into which the library is installed and
provide some notes to the installer.

All of the provided information is displayed as the installer runs.
For more information see “Customize the Installer” on page 6-2.

In the Files required for your application to run section of the compiler, verify
that all of the files required by the deployed MATLAB functions are listed.

Note: These files are compiled into the generated binaries along with the exported
files.

In general the built-in dependency checker will automatically populate this section
with the appropriate files. However, if needed you can manually add any files it
missed.

Compile a C/C++ Shared Library with the Library Compiler App

9

For more information see “Manage Required Files in a Compiler Project” on page
6-6.

In the Files installed with your application section of the compiler, verify that
any additional non-MATLAB files you want installed with the application are listed.

Note: These files are placed in the applications folder of the installed application.

This section automatically lists:

Generated shared library

+ Header file

* Dynamically linked library
Readme file

You can manually add files to the list. Additional files can include documentation,
sample data files, and examples to accompany the application.

For more information see “Specify Files to Install with the Application” on page
6-8.

Click the Settings button to customize the flags passed to the compiler and the
folders to which the generated files are written.

10 Click the Package button to compile the MATLAB code and generate any installers.

4-5

4 Deploying C/C++ Shared Libraries

Compile a C/C++ Shared Library from the Command Line

4-6

In this section...

“Execute Compiler Projects with deploytool” on page 4-8

“Compile a Shared Library with mcc” on page 4-6

You can compile shared libraries from both the MATLAB command line and the system
terminal command line:

+ deploytool invokes the compiler app to execute presaved compiler projects

* mcc invokes the raw compiler

Execute Compiler Projects with deploytool

The deploytool command has two flags to invoke the compiler without opening a
window:

* -build project name — Invoke the compiler to build the project and not generate
an installer.

+ -package project_name — Invoke the compiler to build the project and generate
an installer.

For example, deploytool -package magicsquare generates the binary files defined

by the magicsquare project and packages them into an installer that you can distribute
to others.

Compile a Shared Library with mcc

The mcc command invokes the raw compiler and provides fine-level control over the
compilation of the shared library. It, however, cannot package the results in an installer.

To invoke the compiler to generate a library use the -1 flag with mcc. The -1 flag creates
a C shared library that you can integrate into applications developed in C or C++.

For compiling shared libraries, you can also use the following options.

Compiler Shared Library Options

Compile a C/C++ Shared Library from the Command Line

Option

Description

-W lib:name -T link:lib

Generate a C shared library. Equivalent to
using - 1.

-W cpplib:name -T link:lib

Generate a C++ shared library.

-a filePath

Add the file, or files, on the path to the
generated binary.

-d outFolder

Specify the folder into which the results of
compilation are written.

4-7

4 Deploying C/C++ Shared Libraries

What Are Wrapper Files?

In this section...

“C Library Wrapper” on page 4-8

“C++ Library Wrapper” on page 4-8

Wrapper files encapsulate, or wrap, the MATLAB files in your application with an
interface that enables the MATLAB files to operate in a given target environment.

To provide the required interface, the wrapper does the following:

* Performs wrapper-specific initialization and termination
* Provides the dispatching of function calls to the MATLAB runtime

C Library Wrapper

The -1 option, or its equivalent -W lib: libname, produces a C library wrapper file.
This option produces a shared library from an arbitrary set of MATLAB files. The
generated header file contains a C function declaration for each of the compiled MATLAB
functions. The export list contains the set of symbols that are exported from a C shared
library.

Note You must generate a library wrapper file when calling any MATLAB Compiler
generated code from a larger application.

C++ Library Wrapper

The -W cpplib: libname option produces the C++ library wrapper file. This option
allows the inclusion of an arbitrary set of MATLAB files into a library. The generated
header file contains all of the entry points for all of the compiled MATLAB functions.

Note You must generate a library wrapper file when calling any MATLAB Compiler
generated code from a larger application.

4-8

Distributing Applications That Call MATLAB Based Shared Libraries

Distributing Applications That Call MATLAB Based Shared Libraries

Gather and package the following files and distribute them to the deployment machine:

MATLAB runtime installer
MATLAB generated shared library

Executable for the application

Note You can distribute applications containing MATLAB generated libraries to any
target machine that has the same operating system as the machine on which the shared
library was compiled. If you want to deploy the same application to a different platform,
you must use MATLAB Compiler on the different platform and completely rebuild the
application.

4-9

4 Deploying C/C++ Shared Libraries

Distribute Shared Libraries to Be Used with Other Projects

The Library Compiler app generates an installer that packages all of the
artifacts required for distributing a shared library. The installer is located in the
for_redistribution folder of the compiler project.

To distribute the shared library without using the generated installer, you need to
distribute the following:

MATLAB runtime installer
MATLAB generated shared library
MATLAB generated header file

4-10

Compiling Deployable Archives for
MATLAB Production Server

+ “State-Dependent Functions” on page 5-2

+ “Unsupported MATLAB Data Types for Client and Server Marshaling” on page
5-5

+ “Compile a Deployable Archive with the Production Server Compiler App” on page
5-6

+ “Compile a Deployable Archive from the Command Line” on page 5-11

5 Compiling Deployable Archives for MATLAB Production Server

State-Dependent Functions

5-2

MATLAB code that you want to deploy often carries state—a specific data value in a
program or program variable.

Does My MATLAB Function Carry State?

Example of carrying state in a MATLAB program include, but are not limited to:

* Modifying or relying on the MATLAB path and the Java class path
+ Accessing MATLAB state that is inherently persistent or global. Some example of this
include:

Random number seeds

Handle Graphics® root objects that retain data
+ MATLAB or MATLAB toolbox settings and preferences
+ Creating global and persistent variables.

* Loading MATLAB objects (MATLAB classes) into MATLAB. If you access a MATLAB
object in any way, it loads into MATLAB.

+ Calling MEX files, Java methods, or C# methods containing static variables.

Defensive Coding Practices
If your MATLAB function not only carries state, but relies on it for your function to
properly execute, you must take additional steps (listed in this section) to ensure state

retention.

When you deploy your application, consider cases where you carry state, and safeguard
against that state’s corruption if needed. Assume that your state may be changed and
code defensively against that condition.

The following are examples of “defensive coding” practices:
Reset System-Generated Values in the Deployed Application

If you are using a random number seed, for example, reset it in your deployed application
program to ensure the integrity of your original MATLAB function.

State-Dependent Functions

Validate Global or Persistent Variable Values

If you must use global or persistent variables, always validate their value in your
deployed application and reset if needed.

Ensure Access to Data Caches

If your function relies on cached replies to previous requests, for instance, ensure your
deployed system and application has access to that cache outside of the MATLAB
environment.

Use Simple Data Types When Possible

Simple data types are usually not tied to a specific application and means of storing
state. Your options for choosing an appropriate state-preserving tool increase as your
data types become less complicated and specific.

Avoid Using MATLAB Callback Functions

Avoid using MATLAB callbacks, such as timer. Callback functions have the ability to
interrupt and override the current state of the MATLAB Production Server worker and
may yield unpredictable results in multiuser environments.

Techniques for Preserving State

The most appropriate method for preserving state depends largely on the type of data
you need to save.

+ Databases provide the most versatile and scalable means for retaining stateful data.
The database acts as a generic repository and can generally work with any application
in an enterprise development environment. It does not impose requirements or
restrictions on the data structure or layout. Another related technique is to use
comma-delimited files, in applications such as Microsoft Excel.

+ Data that is specific to a third-party programming language, such as Java and C#,
can be retained using a number of techniques. Consult the online documentation for
the appropriate third-party vendor for best practices on preserving state.

Caution Using MATLAB LOAD and SAVE functions is often used to preserve state
in MATLAB applications and workspaces. While this may be successful in some

5 Compiling Deployable Archives for MATLAB Production Server

circumstances, it is highly recommended that the data be validated and reset if needed, if
not stored in a generic repository such as a database.

5-4

Unsupported MATLAB Data Types for Client and Server Marshaling

Unsupported MATLAB Data Types for Client and Server Marshaling

These data types are not supported for marshaling between MATLAB Production Server
instances and clients:

MATLAB function handles
Complex (imaginary) data

Sparse arrays

5-5

5 Compiling Deployable Archives for MATLAB Production Server

Compile a Deployable Archive with the Production Server
Compiler App

To compile MATLAB code into a deployable archive:

1 Open the Production Server Compiler.

a On the toolstrip select the Apps tab on the toolstrip.
b Click the arrow at the far right of the tab to open the apps gallery.
¢ Click Production Server Compiler.

5-6

Compile a Deployable Archive with the Production Server Compiler App

4\ MATLAB Compiler - Untithed Lprj o | B [|

Archive Information

Component Name

Files required for your archive to run

Files installed with your application

] et #] readme.tst

¥ Additional Runtime Settings

Note: To open an existing project, select it from the MATLAB Current Folder
panel.

Note: You can also launch the compiler using the
productionServerCompi ler function.
2 In the Application Type section of the toolstrip, select Deployable Archive.

5 Compiling Deployable Archives for MATLAB Production Server

5-8

Note: If the Application Type section of the toolstrip is collapsed, you can expand it
by clicking the down arrow.
3 Specify the MATLAB files you want deployed in the package.

a Inthe Exported Functions section of the toolstrip, click the plus button.

Note: If the Exported Functions section of the toolstrip is collapsed, you can

expand it by clicking the down arrow.

In the file explorer that opens, locate and select one or more the MATLAB files.
¢ Click Open to select the file and close the file explorer.

The names of the selected files are added to the list and a minus button appears
below the plus button. The name of the first file listed is used as the default
application name.

4 In the Packaging Options section of the toolstrip, specify how the installer will

deliver the MATLAB runtime with the archive.

Note: If the Packaging Options section of the toolstrip is collapsed, you can expand
it by clicking the down arrow.

You can select one or both of the following options:

* Runtime downloaded from web — Generates an installer that downloads the
MATLAB runtime installer from the Web.

+ Runtime included in package — Generates an installer that includes the
MATLAB runtime installer.

Note: Selecting both options creates two installers.

Regardless of the options selected the generated installer scans the target system to
determine if there is an existing installation of the appropriate MATLAB runtime. If
there is not, the installer installs the MATLAB runtime.

5 Specify the name of any generated installers.

Compile a Deployable Archive with the Production Server Compiler App

In the Application Information and Additional Installer Options sections of
the compiler, customize the look and feel of the generated installer.

You can change the information used to identify the application data used by the
installer:
Splash screen
Installer icon
+ Version
+ Name and contact information of the archive’s author
* Brief summary of the archive’s purpose
+ Detailed description of the archive

You can also change the default location into which the archive is installed and
provide some notes to the installer.

All of the provided information is displayed as the installer runs.
For more information see “Customize the Installer” on page 6-2.

In the Files required for your application to run section of the compiler, verify
that all of the files required by the deployed MATLAB functions are listed.

Note: These files are compiled into the generated binaries along with the exported
files.

The built-in dependency checker will automatically populate this section with the
appropriate files. However, if needed you can manually add any files it missed.

For more information see “Manage Required Files in a Compiler Project” on page
6-6.

In the Files installed with your application section of the compiler, verify that
any additional non-MATLAB files you want installed with the application are listed.

Note: These files are placed in the applications folder of the installation.

This section automatically lists:

5-9

5 Compiling Deployable Archives for MATLAB Production Server

* Generated deployable archive
Readme file

You can manually add files to the list. Additional files can include documentation,
sample data files, and examples to accompany the application.

For more information see “Specify Files to Install with the Application” on page
6-8.

9 Click the Settings button to customize the flags passed to the compiler and the
folders to which the generated files are written.

10 Click the Package button to compile the MATLAB code and generate any installers.
11 Verify that the generated output contains:

for_redistribution — A folder containing the installer to distribute the
archive

for_testing — A folder containing the raw generated files to create the
installer

+ PackaginglLog.txt — A log file generated by the compiler

5-10

Compile a Deployable Archive from the Command Line

Compile a Deployable Archive from the Command Line

In this section...

“Execute Compiler Projects with deploytool” on page 5-8
“Compile a Deployable Archive with mcc” on page 5-11

You can compile deployable archives from both the MATLAB command line and the
system terminal command line:
+ deploytool invokes the compiler app to execute a pre-saved compiler project

* mcc invokes the raw compiler

Execute Compiler Projects with deploytool

The deploytool command has two flags to invoke the compiler without opening a
window:

* -build project _name — Invoke the compiler to build the project and not generate
an installer.

+ -package project_name — Invoke the compiler to build the project and generate
an installer.

For example, deploytool -package magicsquare generates the binary files defined
by the magicsquare project and packages them into an installer that you can distribute
to others.

Compile a Deployable Archive with mcc

The mcc command invokes the raw compiler and provides fine-level control over the
compilation of the deployable archive. It, however, cannot package the results in an
installer.

To invoke the compiler to generate a deployable arcive use the -W
CTF:component_name flag with mcc. The -W CTF:component name flag creates a
deployable archive called component name .ctf.

For compiling deployable archives, you can also use the following options.

5-11

5 Compiling Deployable Archives for MATLAB Production Server

Compiler Java Options

Option Description

-a filePath Add any files on the path to the generated
binary.

-d outFolder Specify the folder into which the results of
compilation are written.

class{className:mfilename. ..} Specify that an additional class is
generated that includes methods for the
listed MATLAB files.

5-12

Customizing a Compiler Project

* “Customize the Installer” on page 6-2

+ “Manage Required Files in a Compiler Project” on page 6-6
+ “Specify Files to Install with the Application” on page 6-8

+ “Manage Support Packages” on page 6-9

6 Customizing a Compiler Project

Customize the Installer

In this section...

“Change the Application Icon” on page 6-2
“Add Application Information” on page 6-3
“Change the Splash Screen” on page 6-3
“Change the Installation Path” on page 6-4
“Change the Logo” on page 6-4

“Edit the Installation Notes” on page 6-5

Change the Application Icon

The application icon is used for the generated installer. For standalone applications, it is
also the application's icon.

You can change the default icon in Application Information. To set a custom icon:
1 Click the graphic to the left of the Application name field.

A window previewing the icon opens.

i :

48x48 3232 16x16
a

lcan dl;pla}-’ed in apps gallm}-’l

Selecticon

[l Use mask [] Use barder

’ Sawe and Use

2 Click Select icon.
3 Using the file explorer, locate the graphic file to use as the application icon.

4 Select the graphic file.

6-2

Customize the Installer

Click OK to return to the icon preview.

Select Use mask to fill any blank spaces around the icon with white.
Select Use border to add a border around the icon.

Click Save and Use to return to the main compiler window.

© N OO

Add Application Information

The Application Information section of the compiler app allows you to provide these
values:

*» Name

Determines the name of the installed MATLAB artifacts. For example, if the name
is Foo, the installed executable would be foo.exe, the Windows start menu entry
would be foo. The folder created for the application would be InstallRoot/foo.

The default value is the name of the first function listed in the Main File(s) field of
the compiler.

+ Version

The default value is 1.0.
* Author name
* Support e-mail address
+ Company name
Determines the full installation path for the installed MATLAB artifacts.

For example, if the company name is bar, the full installation path would be
InstallRoot/bar/ApplicationName.

* Summary

* Description

This information is all optional and, unless otherwise stated, is only used for display
purposes. It appears on the first page of the installer. On Windows systems, this
information is also displayed in the Windows Add/Remove Programs control panel.

Change the Splash Screen

The installer’s splash screen displays after the installer is started. It is displayed, along
with a status bar, while the installer initializes.

6-3

6 Customizing a Compiler Project

6-4

You can change the default image by clicking the Select custom splash screen link in
Application Information. When the file explorer opens, locate and select a new image.

Note: You can drag and drop a custom image onto the default splash screen.

Change the Installation Path

Default Installation Paths lists the default path the installer will use when installing the
compiled binaries onto a target system.

Default Installation Paths

Windows C:\Program Files
\companyName\appName

Mac OS X /Applications/companyName/appName

Linux /usr/companyName/appName

You can change the default installation path by editing the Default installation folder
field under Additional Installer Options.

The Default installation folder field has two parts:

* root folder — A drop down list that offers options for where the install folder is
installed. Custom Installation Roots lists the optional root folders for each platform.

Custom Installation Roots

Windows C:\Users\userName\AppData

Linux /usr/local

+ install folder — A text field specifying the path appended to the root folder.

Change the Logo

The logo displays after the installer is started. It is displayed on the right side of the
installer.

You change the default image by clicking the Select custom logo link in Additional
Installer Options. When the file explorer opens, locate and select a new image.

Customize the Installer

Note: You can drag and drop a custom image onto the default logo.

Edit the Installation Notes

Installation notes are displayed once the installer has successfully installed the packaged
files on the target system. They can provide useful information concerning any additional
set up that is required to use the installed binaries or simply provide instructions for how
to run the application.

The field for editing the installation notes is in Additional Installer Options.

6-5

6 Customizing a Compiler Project

Manage Required Files in a Compiler Project

6-6

In this section...

“Dependency Analysis” on page 6-6
“Using the Compiler Apps” on page 6-6

“Using mcc” on page 6-6

Dependency Analysis

The compiler uses a dependency analysis function to automatically determine what
additional MATLAB files are required for the application to compile and run. These files
are automatically compiled into the generated binary. The compiler does not generate
any wrapper code allowing direct access to the functions defined by the required files.

Using the Compiler Apps

If you are using one of the compiler apps, the required files discovered by the dependency
analysis function are listed in the Files required by your application to run field.

To add files:

1 Click the plus button in the field.
2 Select the desired file from the file explorer.
3 Click OK.

To remove files:

1 Select the desired file.
2 Press the Delete key.

Caution Removing files from the list of required files may cause your application to not
compile or to not run properly when deployed.

Using mcc

If you are using mcc to compile your MATLAB code, the compiler does not display a list
of required files before running. Instead, it compiles all of the required files that are

Manage Required Files in a Compiler Project

discovered by the dependency analysis function and adds them to the generated binary
file.

You can add files to the list by passing one, or more, —a arguments to mcc. The -a
arguments add the specified files to the list of files to be added into the generated binary.
For example, —a hello.m adds the file hello.m to the list of required files and -a ./
foo adds all of the files in Foo, and its subfolders, to the list of required files.

6-7

6 Customizing a Compiler Project

Specify Files to Install with the Application

The compiler apps package files to install along with the ones it generates. By default the
installer includes a readme file with instructions on installing the MATLAB Compiler
Runtine and configuring it.

These files are listed in the Files installed with your application section of the app.
to add files to the list:

1 Click the plus button in the field.
2 Select the desired file from the file explorer.
3 Click OK to close the file explorer.

To remove files from the list:

1 Select the desired file.
2 Press the Delete key.

Caution Removing the binary targets from the list results in an installer that does not
install the intended functionality.

When installed on a target computer, the files listed in the Files installed with your
application are placed in the application folder.

6-8

Manage Support Packages

Manage Support Packages

Using a Compiler App

Many MATLAB toolboxes use support packages to interact with hardware or to provide
additional processing capabilities. If your MATLAB code uses a toolbox with an installed
support package, the compiler app displays a Suggested Support Packages section.

Suggested Support Packages

Package Product Motes
Digilent Analog Discovery Data Acquisition Toolbox =l
DirectSound Audio Data Acquisition Toolbox

W Additional Installer Options

Default installation folder: :%ProgramFiIe_s% A \DAQAudioTest),

* This program requires:

-- Digilent WaveForms from http://www.digilentinc.com available at http:/fwww.digilentinc.cormn/Data/Produc
ts/WAVEFORMS/digilent.waveforms_v2.4.4.exe</a» Select custom lago

The list displays all installed support packages that your MATLAB code requires. The
list is determined using these criteria:

* the support package is installed

+ your code has a direct dependency on the support package

* your code is dependent on the base product of the support package

+ your code is dependent on at least one of the files listed as a dependency in the
mcc . xml file of the support package, and the base product of the support package is

MATLAB

Deselect support packages that are not required by your application.

Some support packages require third-party drivers that the compiler cannot package.
In this case, the compiler adds the information to the installation notes. You can edit

6 Customizing a Compiler Project

6-10

installation notes in the Additional Installer Options section of the app. To remove
the installation note text, deselect the support package with the third-party dependency.

Caution Any text you enter beneath the generated text will be lost if you deselect the
support package.

Using the Command Line

Many MATLAB toolboxes use support packages to interact with hardware or to provide
additional processing capabilities. If your MATLAB code uses a toolbox with an installed
support package, you pass a —a flag to mcc when compiling your MATLAB code.

For example, if your function uses the 0S Generic Video Interface support
package.

mcc -m -v test.m -a C:\MATLAB\SupportPackages\R2014a\genericvideo

Some support packages require third-party drivers that the compiler cannot package. In
this case, you are responsible for downloading and installing the required drivers.

MATLAB Code Deployment

“Application Deployment Products and the Compiler Apps” on page 7-2
“Write Deployable MATLAB Code” on page 7-10

“How the Deployment Products Process MATLAB Function Signatures” on page
7-14

“Load MATLAB Libraries using loadlibrary” on page 7-16
“Use MATLAB Data Files (MAT Files) in Compiled Applications” on page 7-18

7 MATLAB Code Deployment
ploy

Application Deployment Products and the Compiler Apps

In this section...

“What Is the Difference Between the Compiler Apps and the mcc Command Line?” on
page 7-2

“How Does MATLAB Compiler Software Build My Application?” on page 7-2
“Dependency Analysis Function” on page 7-5

“MEX-Files, DLLs, or Shared Libraries” on page 7-6

“Deployable Archive” on page 7-6

What Is the Difference Between the Compiler Apps and the mcc
Command Line?

When you use one of the compiler apps, you perform any function you would invoke using
the MATLAB Compiler mcc command-line interface. The compiler apps’ interactive
menus and dialogs build mcc commands that are customized to your specification. As
such, your MATLAB code is processed the same way as if you were compiling it using
mcCc.

Compiler app advantages include:

* You perform related deployment tasks with a single intuitive interface.
* You maintain related information in a convenient project file.

* Your project state persists between sessions.

* You load previously stored compiler projects from a prepopulated menu.
+ Package applications for distribution.

How Does MATLAB Compiler Software Build My Application?

To build an application, MATLAB Compiler software performs these tasks:

1 Parses command-line arguments and classifies by type the files you provide.

2 Analyzes files for dependencies using a dependency analysis function. Dependencies
affect deployability and originate from functions called by the file. Deployability is
affected by:

+ File type — MATLAB, Java, MEX, and so on.

7-2

Application Deployment Products and the Compiler Apps

+ File location — MATLAB, MATLAB toolbox, user code, and so on.

For more information about how the compiler does dependency analysis, see
“Dependency Analysis Function” on page 7-5.

7-3

7 MATLAB Code Deployment
ploy

User

N MathWorks Source User
Function Dependency .
Source Native Source
Database . .
files Language files

files

MBUILD Options File MATLAB Compiler

Y
MBUILD Perl Script

Generated Native
Language Code

Generated

Vendor Compiler (C/C++/C#/java) CTF Archive

Generated
binary

MCR
Creation
API

l

MCR

= Circles: Input Files
= Boxes: MathWorks-supplied components
7-4 = Ellipses: Qutput Files

Application Deployment Products and the Compiler Apps

3 Validates MEX-files. In particular, mexFunction entry points are verified. For more
details about MEX-file processing, see “MEX-Files, DLLs, or Shared Libraries” on
page 7-6.

4 Creates a deployable archive from the input files and their dependencies. For more
details about deployable archives see “Deployable Archive” on page 7-6.

5 Generates target-specific wrapper code. For example, a C main function requires a
very different wrapper than the wrapper for a Java interface class.

6 Generates target-specific binary package. For library targets such as C++ shared
libraries, Java packages, or .NET assemblies, the compiler will invoke the required
third-party compiler.

Dependency Analysis Function

MATLAB Compiler uses a dependency analysis function to determine the list of
necessary files to include in the generated package. Sometimes, this process generates
a large list of files, particularly when MATLAB object classes exist in the compilation
and the dependency analyzer cannot resolve overloaded methods at compile time.
Dependency analysis also processes include/exclude files on each pass.

Tip To improve compile time performance and lessen application size, prune the path
with the mcc command’s -N and —-p flags. You can also specify Files required for your
application in the compiler app.

The dependency analyzer searches for executable content such as:

+ MATLAB files
+ P-files

Note: If the MATLAB file corresponding to the p-file is not available, the dependency
analysis will not be able to determine the p-file’s dependencies.

+ Java classes and . jar files
+ _Figfiles
+ MEX-files

The dependency analyzer does not search for data files of any kind. You must manually
include data files in the search.

7-5

7 MATLAB Code Deployment

7-6

MEX-Files, DLLs, or Shared Libraries

When you compile MATLAB functions containing MEX-files, ensure that the dependency
analyzer can find them. Doing so allows you to avoid many common compilation
problems. In particular, note that:

+ Since the dependency analyzer cannot examine MEX-files, DLLs, or shared libraries
to determine their dependencies, explicitly include all executable files these files
require. To do so, use either the mcc -a option or the Files required for your
application to run field in the compiler app.

* If you have any doubts that the dependency analyzer can find a MATLAB function
called by a MEX-file, DLL, or shared library, then manually include that function. To
do so, use either the mcc -a option or the Files required for your application to
run field in the compiler app.

* Not all functions are compatible with MATLAB Compiler. Check the file
mccExcludedFiles. log after your build completes. This file lists all functions
called from your application that you cannot deploy.

Deployable Archive

Each application or shared library you produce using MATLAB Compiler has an
embedded deployable archive. The archive contains all the MATLAB based content
(MATLAB files, MEX-files, and so on). All MATLAB files in the deployable archive are
encrypted using the Advanced Encryption Standard (AES) cryptosystem.

If you choose to extract the deployable archive as a separate file, the files remain
encrypted. For more information on how to extract the deployable archive refer to the
references in the following table.

Information on Deployable Archive Embedding/Extraction and Component Cache

Product Refer to

MATLAB Compiler “MATLAB Runtime Component Cache and
Deployable Archive Embedding”

MATLAB Builder NE “MATLAB Runtime Component Cache and
Deployable Archive Embedding”

MATLAB Builder JA “Deployable Archive Embedding and
Extraction”

Application Deployment Products and the Compiler Apps

MATLAB Builder EX “Using MCR Component Cache and CTF
Archive Embedding”

7-7

7 MATLAB Code Deployment
ploy

Generated Component (EXE, DLL, SO, eic)

Target-
Specific
Binary
Code

CTF Archive

T

Encrypted
MATLAB Data

N
T

Data File

N
T

MEX-File

—

7-8

Application Deployment Products and the Compiler Apps

Additional Details

Multiple deployable archives, such as those generated with COM components, . NET
assemblies, or Excel add-ins, can coexist in the same user application. You cannot,
however, mix and match the MATLAB files they contain. You cannot combine encrypted
and compressed MATLAB files from multiple deployable archives into another
deployable archive and distribute them.

All the MATLAB files from a given deployable archive associate with a unique
cryptographic key. MATLAB files with different keys, placed in the same deployable
archive, do not execute. If you want to generate another application with a different mix
of MATLAB files, recompile these MATLAB files into a new deployable archive.

MATLAB Compiler deletes the deployable archive and generated binary following a
failed compilation, but only if these files did not exist before compilation initiates. Run
help mcc -K for more information.

Caution Release Engineers and Software Configuration Managers: Do not use
build procedures or processes that strip shared libraries on deployable archives. If you
do, you can possibly strip the deployable archive from the binary, resulting in run-time
errors for the driver application.

7-9

7 MATLAB Code Deployment
ploy

Write Deployable MATLAB Code

7-10

In this section...

“Compiled Applications Do Not Process MATLAB Files at Runtime” on page 7-10

“Do Not Rely on Changing Directory or Path to Control the Execution of MATLAB Files”
on page 7-11

“Use ismcc and isdeployed Functions To Execute Deployment-Specific Code Paths” on
page 7-11

“Gradually Refactor Applications That Depend on Noncompilable Functions” on page
7-12

“Do Not Create or Use Nonconstant Static State Variables” on page 7-12

“Get Proper Licenses for Toolbox Functionality You Want to Deploy” on page 7-13

Compiled Applications Do Not Process MATLAB Files at Runtime

MATLAB Compiler secures your code against unauthorized changes. Deployable
MATLAB files are suspended or frozen at the time MATLAB Compiler encrypts them—
they do not change from that point onward. This does not mean that you cannot deploy
a flexible application—it means that you must design your application with flexibility in
mind. If you want the end user to be able to choose between two different methods, for
example, both methods must be available in the deployable archive.

The MATLAB runtime only works on MATLAB code that was encrypted when the
deployable archive was built. Any function or process that dynamically generates new
MATLAB code will not work against the MATLAB runtime.

Some MATLAB toolboxes, such as the Neural Network Toolbox™ product, generate
MATLAB code dynamically. Because the MATLAB runtime only executes encrypted
MATLAB files, and the Neural Network Toolbox generates unencrypted MATLAB files,
some functions in the Neural Network Toolbox cannot be deployed.

Similarly, functions that need to examine the contents of a MATLAB function file cannot
be deployed. HELP, for example, is dynamic and not available in deployed mode. You

can use LOADLIBRARY in deployed mode if you provide it with a MATLAB function
prototype.

Instead of compiling the function that generates the MATLAB code and attempting to
deploy it, perform the following tasks:

Write Deployable MATLAB Code

1 Run the code once in MATLAB to obtain your generated function.

2 Compile the MATLAB code with MATLAB Compiler, including the generated
function.

Tip Another alternative to using EVAL or FEVAL is using anonymous function handles.

If you require the ability to create MATLAB code for dynamic run time processing, your
end users must have an installed copy of MATLAB.

Do Not Rely on Changing Directory or Path to Control the Execution of
MATLAB Files

In general, good programming practices advise against redirecting a program search
path dynamically within the code. Many developers are prone to this behavior since it
mimics the actions they usually perform on the command line. However, this can lead to
problems when deploying code.

For example, in a deployed application, the MATLAB and Java paths are fixed and
cannot change. Therefore, any attempts to change these paths (using the cd command or
the addpath command) fails

If you find you cannot avoid placing addpath calls in your MATLAB code, use ismcc and
isdeployed. See “Use ismcc and isdeployed Functions To Execute Deployment-Specific
Code Paths” on page 7-11 for details.

Use ismcc and isdeployed Functions To Execute Deployment-Specific Code
Paths

The isdeployed function allows you to specify which portion of your MATLAB code is
deployable, and which is not. Such specification minimizes your compilation errors and
helps create more efficient, maintainable code.

For example, you find it unavoidable to use addpath when writing your startup.m.
Using ismcc and isdeployed, you specify when and what is compiled and executed.

7-11

7 MATLAB Code Deployment
ploy

7-12

Gradually Refactor Applications That Depend on Noncompilable
Functions

Over time, refactor, streamline, and modularize MATLAB code containing non-
compilable or non-deployable functions that use ismcc and isdeployed. Your eventual
goal is “graceful degradation” of non-deployable code. In other words, the code must
present the end user with as few obstacles to deployment as possible until it is practically
eliminated.

Partition your code into design-time and run time code sections:

* Design-time code is code that is currently evolving. Almost all code goes through a
phase of perpetual rewriting, debugging, and optimization. In some toolboxes, such as
the Neural Network Toolbox product, the code goes through a period of self-training
as it reacts to various data permutations and patterns. Such code is almost never
designed to be deployed.

* Run-time code, on the other hand, has solidified or become stable—it is in a finished
state and is ready to be deployed by the end user.

Consider creating a separate directory for code that is not meant to be deployed or for
code that calls undeployable code.

Do Not Create or Use Nonconstant Static State Variables

Avoid using the following:

* Global variables in MATLAB code
+ Static variables in MEX-files

+ Static variables in Java code
The state of these variables is persistent and shared with everything in the process.

When deploying applications, using persistent variables can cause problems because
the MATLAB runtime process runs in a single thread. You cannot load more than one
of these non-constant, static variables into the same process. In addition, these static
variables do not work well in multithreaded applications.

When programming against compiled MATLAB code, you should be aware that an
instance of the MATLAB runtime is created for each instance of a new class. If the same
class is instantiated again using a different variable name, it is attached to the MATLAB

Write Deployable MATLAB Code

runtime created by the previous instance of the same class. In short, if an assembly
contains n unique classes, there will be maximum of »n instances of MATLAB runtimes
created, each corresponding to one or more instances of one of the classes.

If you must use static variables, bind them to instances. For example, defining instance
variables in a Java class is preferable to defining the variable as static.

Note: This guideline does not apply to MATLAB Builder EX. When programming with
Microsoft Excel, you can assign global variables to large matrices that persist between
calls.

Get Proper Licenses for Toolbox Functionality You Want to Deploy

You must have a valid MathWorks license for toolboxes you use to create deployable
MATLAB code.

7-13

7 MATLAB Code Deployment
ploy

How the Deployment Products Process MATLAB Function
Signatures

7-14

In this section...

“MATLAB Function Signature” on page 7-14
“MATLAB Programming Basics” on page 7-14

MATLAB Function Signature

MATLAB supports multiple signatures for function calls.
The generic MATLAB function has the following structure:
function [Outl,Out2,..._, varargout]=foo(lnl,In2, ..., varargin)

To the left of the equal sign, the function specifies a set of explicit and optional return
arguments.

To the right of the equal sign, the function lists explicit input arguments followed by one
or more optional arguments.

All arguments represent a specific MATLAB type.

When the compiler or builder product processes your MATLAB code, it creates several
overloaded methods that implement the MATLAB functions. Each of these overloaded
methods corresponds to a call to the generic MATLAB function with a specific number of
input arguments.

In addition to these methods, the builder creates another method that defines the return
values of the MATLAB function as an input argument. This method simulates the feval
external API interface in MATLAB.

MATLAB Programming Basics

Creating a Deployable MATLAB Function

Virtually any calculation that you can create in MATLAB can be deployed, if it resides in
a function. For example:

Taking Inputs info a Function

>> 1 + 1
cannot be deployed.

However, the following calculation:

function result = addSomeNumbers()
result = 1+1;
end

can be deployed because the calculation now resides in a function.

Taking Inputs into a Function

You typically pass inputs to a function. You can use primitive data type as an input into
a function.

To pass inputs, put them in parentheses. For example:

function result = addSomeNumbers(numberl, number2)
result = numberl + number2;
end

7-15

7 MATLAB Code Deployment
ploy

Load MATLAB Libraries using loadlibrary

Note: It is important to understand the difference between the following:

+ MATLAB loadlibrary function — Loads shared library into MATLAB.

* Operating system loadlibrary function — Loads specified Windows or UNIX
operating system module into the address space of the calling process.

With MATLAB Compiler version 4.0 (R14) and later, you can use MATLAB file
prototypes as described below to load your library in a compiled application. Loading
libraries using H-file headers is not supported in compiled applications. This behavior
occurs when loadlibrary is compiled with the header argument as in the statement:

loadlibrary(library, header)

In order to work around this issue, execute the following at the MATLAB command
prompt:

loadlibrary(library, header, "mfilename®, "mylibrarymfile®);

where mylibrarymfile is the name of a MATLAB file you would like to use when
loading this library. This step only needs to be performed once to generate a MATLAB
file for the library.

In the code that is to be compiled, you can now call loadl ibrary with the following
syntax:

loadlibrary(library, @mylibrarymfile, “"alias®, alias)

It is only required to add the prototype .m file and .dl1 file to the deployable archive
of the deployed application. There is no need for .h files and C/C++ compilers to be
installed on the deployment machine if the prototype file is used.

Once the prototype file is generated, add the file to the deployable archive of the
application being compiled. You can do this with the -a option (if using the mcc
command) or by dragging it under Other/Additional Files (as a helper file) if using one
of the compiler apps.

With MATLAB Compiler versions 4.0.1 (R14+) and later, generated MATLAB files will
automatically be included in the deployable archive as part of the compilation process.

7-16

Load MATLAB Libraries using loadlibrary

For MATLAB Compiler versions 4.0 (R14) and later, include your library MATLAB file in
the compilation with the -a option with mcc.

Restrictions on Using MATLAB Function loadlibrary with MATLAB Compiler

Note the following limitations in regards to using loadl ibrary with MATLAB
Compiler. For complete documentation and up to date restrictions on loadlibrary,
please reference the MATLAB documentation.

* You can not use loadlibrary inside of MATLAB to load a “shared library built with
MATLAB Compiler”.

+ With MATLAB Compiler Version 3.0 (R13SP1) and earlier, you cannot compile calls
to loadlibrary because of general restrictions and limitations of the product.

7-17

7 MATLAB Code Deployment
ploy

Use MATLAB Data Files (MAT Files) in Compiled Applications

In this section...

“Explicitly Including MAT files Using the %#function Pragma” on page 7-18
“Load and Save Functions” on page 7-18
“MATLAB Objects” on page 7-21

Explicitly Including MAT files Using the %#function Pragma

MATLAB Compiler excludes MAT files from “Dependency Analysis Function” on page 7-5
by default.

If you want MATLAB Compiler to explicitly inspect data within a MAT file, you need to
specify the %#Ffunction pragma when writing your MATLAB code.

For example, if you are creating a solution with Neural Network Toolbox, you need
to use the %#function pragma within your GUI code to include a dependency on the
gmdistribution class, for instance.

Load and Save Functions

If your deployed application uses MATLAB data files (MAT-files), it is helpful to code
LOAD and SAVE functions to manipulate the data and store it for later processing.

+ Use isdeployed to determine if your code is running in or out of the MATLAB
workspace.

* Specify the data file by either using WHICH (to locate its full path name) define it
relative to the location of ctfroot.

+ All MAT-files are unchanged after mcc runs. These files are not encrypted when
written to the deployable archive.

For more information about deployable archives, see “Deployable Archive” on page 7-6.
See the ctfroot reference page for more information about ctfroot.

Use the following example as a template for manipulating your MATLAB data inside,
and outside, of MATLAB.

7-18

Use MATLAB Data Files (MAT Files) in Compiled Applications

Using Load/Save Functions to Process MATLAB Data for Deployed Applications

The following example specifies three MATLAB data files:

N =

user_data.mat
userdata\extra_data.mat
. .\externdata\extern_data.mat

Navigate to matlab_root\extern\examples\compiler\Data_ Handling
Compile ex_loadsave.m with the following mcc command:
mcc -mv ex_loadsave.m -a “user_data.mat® -a

" .\userdata\extra_data.mat" -a
" . .\externdata\extern_data.mat”

ex_loadsave.m

function ex_loadsave

This example shows how to work with the
"load/save" functions on data files in
deployed mode. There are three source data files
in this example.

user_data.mat

userdata\extra_data.mat

. \externdata\extern_data.mat

Compile this example with the mcc command:
mcc -m ex_loadsave.m -a “"user_data.mat® -a
" .\userdata\extra_data.mat"
-a "..\externdata\extern_data.mat"
All the folders under the current main MATLAB file directory will
be included as
relative path to ctfroot; All other folders will have the
folder
structure included in the deployable archive file from root of the
disk drive.

IT a data file is outside of the main MATLAB file path,
the absolute path will be
included in deployable archive and extracted under ctfroot. For example:
Data file
"c:\$matlabroot\examples\externdata\extern_data.mat"
will be added into deployable archive and extracted to
"$ctfroot\$matlabroot\examples\externdata\extern_data.mat".

All mat/data files are unchanged after mcc runs. There is
no excryption on these user included data files. They are
included in the deployable archive.

The target data file is:
\output\saved_data.mat

7-19

7 MATLAB Code Deployment
ploy

7-20

% When writing the file to local disk, do not save any files
% under ctfroot since it may be refreshed and deleted
% when the application isnext started.

%==== load data file
if isdeployed
% In deployed mode, all file under CTFRoot in the path are loaded
% by full path name or relative to $ctfroot.
% LOADFILENAMEl=which(fullfile(ctfroot,mfilename, "user_data.mat"));
% LOADFILENAME2=which(fullfile(ctfroot, "userdata”, "extra_data.mat"));
LOADFILENAME1=which(fullfile("user_data.mat"));
LOADFILENAME2=which(fullfile("extra_data.mat"));
% For external data file, full path will be added into deployable archive;
% you don"t need specify the full path to find the file.
LOADFILENAME3=which(fullfile("extern_data.mat"));
else
%running the code in MATLAB
LOADFILENAME1=FulIfile(matlabroot, "extern”, "examples”, "compiler”,
"Data_Handling", "user_data.mat");
LOADFILENAME2=FulIfile(matlabroot, "extern”, "examples”, "compiler”,
"Data_Handling", "userdata”, "extra_data.mat");
LOADFILENAME3=FulIfile(matlabroot, "extern”, "examples”, "compiler”,
"externdata”, "extern_data.mat");

end

% Load the data file from current working directory
disp(["Load A from : ",LOADFILENAME1]);

load (LOADFILENAMEL, "datal™);

disp("A= ");

disp(datal);

% Load the data file from sub directory
disp(["Load B from : *,LOADFILENAME2]);
load (LOADFILENAME2, "data2™);

disp("B= ");

disp(data2);

% Load extern data outside of current working directory
disp(["Load extern data from : " ,LOADFILENAME3]);

load (LOADFILENAME3) ;

disp("ext_data= ");

disp(ext_data);

%==== multiple the data matrix by 2 ==============
result = datal*data2;

disp("A * B = %);

disp(result);

%==== save the new data to a new file ===========
SAVEPATH=strcat(pwd, filesep, "output®);
if (~isdir(SAVEPATH))

mkdir (SAVEPATH) ;
end
SAVEFILENAME=strcat(SAVEPATH, filesep, "saved_data.mat");
disp(["Save the A * B result to : ",SAVEFILENAME]);

Use MATLAB Data Files (MAT Files) in Compiled Applications

save(SAVEFILENAME, "result™);

MATLAB Objects

When working with MATLAB objects, remember to include the following statement in
your MAT file:

%#Function class_constructor

Using the %#function pragma in this manner forces the dependency analysis to load
needed class definitions, enabling the “MATLAB runtime” to successfully load the object.

7-21

7-22

C and C++ Standalone Executable
and Shared Library Creation

* “Input and Output Files” on page 8-2

+ “Dependency Analysis Function and User Interaction with the Compilation Path” on
page 8-6

8 Cand C++ Standalone Executable and Shared Library Creation

Input and Output Files

In this section...

“Standalone Executable” on page 8-2
“C Shared Library” on page 8-2
“C++ Shared Library” on page 8-4
“Macintosh 64 (Maci64)” on page 8-5

Standalone Executable

In this example, MATLAB Compiler takes the MATLAB files foo.m and bar.m as input
and generates a standalone called foo.

mcc -m Foo.m bar.m

File

Description

foo

The main file of the application. This file reads and
executes the content stored in the embedded deployable
archive. On Windows, this file is foo.exe.

run_component._sh

mcc generates run_<component>_sh file on UNIX
(including Mac) systems for standalone applications. It
temporarily sets up the environment variables needed

at runtime and executes the application. On Windows,
mcc doesn't generate this run script file, because the
environment variables have already been set up by the
installer. In this case, you just run your standalone .exe
file.

C Shared Library

In this example, MATLAB Compiler takes the MATLAB files foo.m and bar.m as input
and generates a C shared library called 1ibfoo.

mcc -W lib:libfoo -T link:lib foo.m bar.m

File

Description

libfoo.c

8-2

The library wrapper C source file containing the
exported functions of the library representing

Input and Output Files

File Description
the C interface to the two MATLAB functions
(foo.m and bar.m) as well as library
initialization code.

libfoo.h The library wrapper header file. This file is

included by applications that call the exported
functions of libfoo.

libfoo_mcc_component_data.c

C source file containing data needed by the
MATLAB runtime to initialize and use the
library. This data includes path information,
encryption keys, and other initialization for the
MATLAB runtime.

libfoo.exports

The exports file used by mbui ld to link the
library.

libfoo

The shared library binary file. On Windows, this
file is libfoo.dl 1.

Note: UNIX extensions vary depending on
the platform. See the External Interfaces
documentation for additional information.

libname.exp

Exports file used by the linker. The linker uses
the export file to build a program that contains
exports, usually a dynamic-link library (.dll).
The import library is used to resolve references
to those exports in other programs.

libname.lib

Import library. An import library is used to
validate that a certain identifier is legal, and
will be present in the program when the .dl1 is
loaded. The linker uses the information from the
import library to build the lookup table for using
identifiers that are not included in the .d11.
When an application or .dl1 is linked, an import
library may be generated, which will be used for
all future .dl Is that depend on the symbols in
the application or .dl 1.

8-3

8 Cand C++ Standalone Executable and Shared Library Creation

C++ Shared Library

In this example, MATLAB Compiler takes the MATLAB files foo.m and bar.m as input
and generates a C++ shared library called 1i1bfoo.

mcc -W cpplib:libfoo -T link:lib foo.m bar.m

File Description

libfoo.cpp The library wrapper C++ source file containing the
exported functions of the library representing the C
++ interface to the two MATLAB functions (foo.m
and bar .m) as well as library initialization code.

libfoo.h The library wrapper header file. This file is

included by applications that call the exported
functions of libfoo.

libfoo_mcc_component_data.c

C++ source file containing data needed by the
MATLAB runtime to initialize and use the library.
This data includes path information, encryption
keys, and other initialization for the MATLAB
runtime.

libfoo.exports

The exports file used by mbui Id to link the library.

libfoo

The shared library binary file. On Windows, this
file is Fibfoo.dl 1.

Note: UNIX extensions vary depending on
the platform. See the External Interfaces
documentation for additional information.

libname.exp

Exports file used by the linker. The linker uses the
export file to build a program that contains exports
(usually a dynamic-link library (.d11). The import
library is used to resolve references to those exports
in other programs.

libname.lib

8-4

Import library. An import library is used to
validate that a certain identifier is legal, and
will be present in the program when the .dl1 is
loaded. The linker uses the information from the
import library to build the lookup table for using

Input and Output Files

File Description
identifiers that are not included in the .d11. When
an application or .dl1 is linked, an import library
may be generated, which will need to be used for
all future .dl1s that depend on the symbols in the
application or .dl 1.
Macintosh 64 (Maci64)
For 64-bit Macintosh, a Macintosh application bundle is created.
File Description
foo.app The bundle created for executable foo. Execution
of the bundle occurs through foo.app/Contents/
Mac0S/foo.
foo Application

run_component.sh

The generated shell script which executes the
application through the bundle.

8-5

8 Cand C++ Standalone Executable and Shared Library Creation

Dependency Analysis Function and User Interaction with the
Compilation Path

8-6

addpath and rmpath in MATLAB

If you run MATLAB Compiler from the MATLAB prompt, you can use the addpath and
rmpath commands to modify the MATLAB path before doing a compilation. There are
two disadvantages:

The path is modified for the current MATLAB session only.

If MATLAB Compiler is run outside of MATLAB, this doesn't work unless a
savepath is done in MATLAB.

Note The path is also modified for any interactive work you are doing in the MATLAB
environment as well.

Passing -l <directory> on the Command Line

You can use the -1 option to add a folder to the beginning of the list of paths to use for
the current compilation. This feature is useful when you are compiling files that are in
folders currently not on the MATLAB path.

Passing -N and -p <directory> on the Command Line

There are two MATLAB Compiler options that provide more detailed manipulation
of the path. This feature acts like a “filter” applied to the MATLAB path for a given
compilation. The first option is -N. Passing -N on the mcc command line effectively clears
the path of all folders except the following core folders (this list is subject to change over
time):

matlabroot\toolbox\matlab

matlabroot\toolbox\local

matlabroot\toolbox\compiler\deploy

matlabroot\toolbox\compiler

It also retains all subfolders of the above list that appear on the MATLAB path at
compile time. Including -N on the command line allows you to replace folders from the

Dependency Analysis Function and User Interaction with the Compilation Path

original path, while retaining the relative ordering of the included folders. All subfolders
of the included folders that appear on the original path are also included. In addition, the
-N option retains all folders that the user has included on the path that are not under
matlabroot\toolbox.

Use the —p option to add a folder to the compilation path in an order-sensitive context,
i.e., the same order in which they are found on your MATLAB path. The syntax is

p <directory>

where <directory> is the folder to be included. If <directory> is not an absolute
path, it is assumed to be under the current working folder. The rules for how these
folders are included are

+ If a folder is included with -p that is on the original MATLAB path, the folder and all
its subfolders that appear on the original path are added to the compilation path in an
order-sensitive context.

+ If a folder is included with —-p that is not on the original MATLAB path, that folder is
not included in the compilation. (You can use -1 to add it.)

+ If a path is added with the - I option while this feature is active (-N has been passed)
and it is already on the MATLAB path, it is added in the order-sensitive context as if
it were included with —-p. Otherwise, the folder is added to the head of the path, as it
normally would be with —1.

Note The -p option requires the —N option on the mcc command line.

8-7

8-8

Hadoop Integration

+ “Package Deployable Archive to Run Against Hadoop with Hadoop Compiler App” on
page 9-2

+ “Create Deployable Archive to Run Against Hadoop Using mcc” on page 9-6

+ “Create Standalone Application to Run Against Hadoop Using mcc” on page 9-9
+ “Hadoop Configuration” on page 9-12

+ “Hadoop Settings File” on page 9-13

9 Hadoop Integration

Package Deployable Archive to Run Against Hadoop with Hadoop
Compiler App

9-2

This example shows how to create a deployable archive that calculates mean airline
delays. It runs against Hadoop using the Hadoop Compiler app, which is accessible

from deploytool. The archive that you create contains all the MATLAB based content
associated with the component. The Hadoop Compiler app generates mcc commands that
help you customize to your specification.

This example uses the MaxMapReduceExample .m example file and the airline dataset,
airlinesmall.csv, both available at the toolbox/matlab/demos folder. The files
in the folder are not part of the MATLAB runtime. Move your example code to a new
working folder for deployment.

Deployable archive that runs against Hadoop using Hadoop Compiler app is supported
only on Linux.

Configure Files and Environment

Set environment variables and cluster properties for your Hadoop configuration. These
properties are necessary for submitting jobs to your Hadoop cluster.

* Set up the environment variable, HADOOP_HOME to point at your Hadoop install folder.
Modify the system path to include $HADOOP_HOME/bin.

* Install the MATLAB runtime in a folder that is accessible by every worker node in the
Hadoop cluster. The following example uses /hd-shared/MCR/v84.

+ Copy the airlinesmall.csv into Hadoop Distributed File System (HDFS™) folder
/datasets/airlinemod.

+ Copy the map function maxArrivalDelayMapper .m from toolbox/matlab/demos
folder to the working folder.

function maxArrivalDelayMapper (data, info, intermKVStore)
partMax = max(data.ArrDelay);
add(intermKVStore, "PartialMaxArrivalDelay", partMax) ;
For more information, see “Write a Map Function”.
+ Copy the reduce function maxArrivalDelayReducer.m from toolbox/matlab/
demos folder to the working folder.

function maxArrivalDelayReducer(intermKey, intermVallter, outKVStore)

Package Deployable Archive to Run Against Hadoop with Hadoop Compiler App

maxVal = -inf;
while hasnext(intermVallter)
maxVal = max(getnext(intermVallter), maxVal);
end
add(outKVStore, "MaxArrivalDelay® ,maxVval);

For more information, see “Write a Reduce Function”.

Create and Save Datastore

Create a datastore object from the MaxMapReduceExample.m and save the
datastore to a .mat file.

ds = datastore("airlinesmall_csv®, "TreatAsMissing®, NA",.._.

"SelectedVariableNames®, "ArrDelay”, "RowsPerRead”, 1000)
save("airlinesmall _mat®,"ds");

For more information, “What Is a Datastore?”
Create a Deployable Archive Using Hadoop Compiler App

Launch the Hadoop Compiler app through the MATLAB command line or through the
apps gallery. At the MATLAB command line type the following command:

hadoopCompiler

Q Hadoop Integration

4 - MATLAB Compiler - maxArrivalDelay. prj

(2)

COMPILER

E_:—_,I:I 5 hinary hirany @ gf

|f‘;'_\| rnaxArri\raIDeIayMap| — |f‘;’_‘| maxArrmaIDeIayRed* —

tabulartext abulartext

MNew Open Save Settings Package

- Project Project
FILE | MaP FUNCTION | REDUCE FUNCTION | INPUT TYPES OUTPUT TYPES | GETTINGS | PACKAGE

MapReduce job payload information

masxarrivalDelay

Configuration file contents

Additional configuration file content

Data store file |tmpimarmapreduce/airlinesmall. mat || Browse.., |

Files required for your MapReduce job payload to run

In the Map Function section of the toolstrip, click the plus button to add map
file, which contains the map function. Browse and select one map function
maxArrivalDelayMapper.m.

In the Reduce Function section of the toolstrip, click the plus button to add reduce
file, which contains the reduce function. Browse and select one reduce function

maxArrivalDelayReducer.m.

In the Input Types section, select tabulartext as input type. By default, the input
type is tabulartext.

In the Output Types section, select tabulartext as output type. By default, the output
type is binary.

Rename the application name to maxArrivalDelay.

9-4

Package Deployable Archive to Run Against Hadoop with Hadoop Compiler App

In the Data store file field, click Browse and select the airlinesmall _.mat file, which
contains the saved datastore object.

Click Package to build a deployable archive.

The Hadoop Compiler app creates a log file PackaginglLog. txt and two folders
for_redistribution and for_testing. The for_redistribution folder
contains readme file, shell script run_maxarrivaldelay.sh, and deployable archive
maxarrivaldelay.ctf. The for_testing folder contains the same three files and a
log file mccExcludedfiles. log.

Run Hadoop Job

At the MATLAB command prompt, run the deployable archive against Hadoop using the
generated shell script. The arguments in the command are MCRRoot, Hadoop properties
defined using -D flag, the data file, and the new results folder.

cd maxArrivalDelay/for_testing
I_/run_maxarrivaldelay.sh /hd-shared/MCR/v84 -D mw.mcrroot=/hd-shared/MCR/v84 /dataset:

View Results in MATLAB

Examine the results using the Hadoop command.
1_/hadoop fs -cat myresults/*

"MaxArrivalDelay®™ [1014]

Other examples of map and reduce functions are available at toolbox/matlab/
demos folder. You can use other examples to prototype similar deployable archives

that run against Hadoop. For more information, see “Build Effective Algorithms with
MapReduce”.

You cannot deploy the examples that pass a MATLAB object from your map function to
your reduce function or from the reduce function to the final output.

See Also

datastore | deploytool | KeyValueDatastore | TabularTextDatastore

Related Examples
. “Create Deployable Archive to Run Against Hadoop Using mcc” on page 9-6

9-5

9 Hadoop Integration

Create Deployable Archive to Run Against Hadoop Using mcc

9-6

This example shows how to create a deployable archive with mcc command that
calculates mean airline delays. The archive that you create contains all the MATLAB
based content associated with the component. The mcc command creates a shell script
to run the deployable archive against Hadoop. You can use shell script to customize the
execution of the deployable archive within your particular Hadoop environment.

This example uses the MaxMapReduceExample .m example file and the airline dataset,
airlinesmall.csv, both available at the toolbox/matlab/demos folder. The files
in the folder are not part of the MATLAB runtime. Move your example code to a new
working folder for deployment.

Deployable archive that runs against Hadoop using mcc is supported only on Linux.
Configure Files and Environment

Set environment variables and cluster properties for your Hadoop configuration. These
properties are necessary for submitting jobs to your Hadoop cluster.

* Set up the environment variable, HADOOP_HOME to point at your Hadoop install folder.

Modify the system path to include $HADOOP_HOME/bin.

* Install the MATLAB runtime in a folder that is accessible by every worker node in the

Hadoop cluster. The following example uses /hd-shared/MCR/v84.

* Copy the airlinesmall .csv into Hadoop Distributed File System (HDFS) folder /
datasets/airlinemod.

* Copy the map function maxArrivalDelayMapper .m from toolbox/matlab/demos
folder to the working folder.

function maxArrivalDelayMapper (data, info, intermKVStore)
partMax = max(data.ArrDelay);
add(intermKVStore, "PartialMaxArrivalDelay", partMax) ;

For more information, see “Write a Map Function”.

+ Copy the reduce function maxArrivalDelayReducer .m from toolbox/matlab/
demos folder to the working folder.

function maxArrivalDelayReducer(intermKey, intermVallter, outKVStore)
maxVal = -inf;
while hasnext(intermVallter)

maxVal = max(getnext(intermVallter), maxval);

Create Deployable Archive to Run Against Hadoop Using mcc

end
add(outKVStore, "MaxArrivalDelay® ,maxVval);

For more information, see “Write a Reduce Function”.
Create and Save Datastore

Create a datastore object from the MaxMapReduceExample.m and save the
datastore to a .mat file.

ds = datastore("airlinesmall_csv®, "TreatAsMissing®,"NA",.._.
"SelectedVariableNames®, "ArrDelay”, "RowsPerRead”, 1000)
save("airlinesmall _mat®,"ds");

For more information, “What Is a Datastore?”
Create Hadoop Settings File

A Hadoop settings file specifies input type tabulartext, output type binary, the map
function, the reduce function, and previously created datastore.

mw.ds. in.type=tabulartext

mw.ds. in.format=airlinesmall.mat
mw.ds.out.type=binary

mw . mapper=maxArrivalDelayMapper

mw . reducer=maxArrivalDelayReducer

For more information, see “Hadoop Settings File” on page 9-13.

Create a Deployable Archive Using mcc

Use the mcc command with the -m flag to create a deployable archive. The -m flag
creates a standard executable that can be run from a command line. However, the mcc
command cannot package the results in an installer.

mcc -H -W "hadoop:airlinesmall,CONFIG:MWHadoopSetting.txt® maxArrivalDelayMapper.m max
For more information, see mcc.

MATLAB Compiler creates a shell script run_maxarrivaldelay.sh, a deployable
archive airlinesmall .ctf, and a log file mccExcludedfiles. log.

Run Hadoop Job

Deploy the archive as a Hadoop job by pointing the job to the csv files in the airline
dataset. The arguments in the command are MCRRoot, Hadoop properties defined using
-D flag, the data file, and the new results folder.

9 Hadoop Integration

. /run_airlinesmall.sh /hd-shared/MCR/v84 -D mw.mcrroot=/hd-shared/MCR/v84 /datasets/al

View Results in MATLAB

Visualize and plot the results.

ds= datastore("hdfs://hadoopOlglnxa64/user/username/myresults/part*", "DatastoreType”,
airlinesmallResult = readall(ds)

Key Value

"MaxArrivalDelay*® [1014]

Other examples of map and reduce functions are available at toolbox/matlab/
demos folder. You can use other examples to prototype similar deployable archives
that run against Hadoop. For more information, see “Build Effective Algorithms with
MapReduce”.

You cannot deploy the examples that pass a MATLAB object from your map function to
your reduce function or from the reduce function to the final output.

See Also

datastore | deploytool | KeyValueDatastore | mcc | TabularTextDatastore

Related Examples

. “Package Deployable Archive to Run Against Hadoop with Hadoop Compiler App”
on page 9-2

9-8

Create Standalone Application to Run Against Hadoop Using mec

Create Standalone Application to Run Against Hadoop Using mcc

This example shows how to modify a MATLAB example that calculates mean airline
delays and creates a standalone application. The standalone application is a MATLAB
program that runs against Hadoop using the mcc command. The mapreducer defines
the environment for Hadoop.

This example uses the MaxMapReduceExample.m example file and the airline dataset,
airlinesmall.csv, both available at the toolbox/matlab/demos folder. The files
in the folder are not part of the MATLAB runtime. Move your example code to a new
working folder for deployment.

Standalone application that runs against Hadoop using mcc is supported only on Linux.
Configure Files and Environment

Set environment variables and cluster properties for your Hadoop configuration. These
properties are necessary for submitting jobs to your Hadoop cluster.

* Set up the environment variable, HADOOP_HOME to point at your Hadoop install folder.
Modify the system path to include $HADOOP_HOME/bin.

setenv ("HADOOP_HOME® ,*/share/hadoop/al.2.1");

+ Install the MATLAB runtime in a folder that is accessible by every worker node in the
Hadoop cluster. The following steps use /hd-shared/MCR/v84.

+ Copy the airlinesmall.csv into Hadoop Distributed File System (HDFS) folder /
datasets/airlinemod.

* Copy the map function maxArrivalDelayMapper .m from toolbox/matlab/demos
folder to the working folder.

function maxArrivalDelayMapper (data, info, intermKVStore)
partMax = max(data.ArrDelay);

add(intermKVStore, "PartialMaxArrivalDelay”,partMax);

For more information, see “Write a Map Function”.

* Copy the reduce function maxArrivalDelayReducer.m from toolbox/matlab/
demos folder to the working folder.

function maxArrivalDelayReducer(intermKey, intermVallter, outKVStore)
maxVal = -inT;
while hasnext(intermVallter)

maxVal = max(getnext(intermVallter), maxVval);

9-9

9 Hadoop Integration

9-10

end
add(outKVStore, "MaxArrivalDelay® ,maxVval);
For more information, see “Write a Reduce Function”.

Create Application using MapReduce

Create a datastore that points to the airline data in Hadoop Distributed File System
(HDFS™) |

ds = datastore("hdfs://hadoopOlglnxa64/datasets/airlinemod/airlinesmall.csv®, "TreatAs!
ds.SelectedVariableNames = {"Year®, “"Month®, "DayofMonth®, “UniqueCarrier”};

If the files are located in HDFS, then the datastore should point to HDFS. For more
information, see “Read from HDFS”.

Create a mapreducer object to set the properties of Hadoop in deployed mode. The
mapreducer passes information about the execution environment to standalone
applications that run against Hadoop. The mapreducer must point to the location of the
MATLAB runtime that is accessible from all the Hadoop worker nodes.

mr = mapreducer(matlab.mapreduce.DeployHadoopMapReducer ("MCRRoot", " /hd-shared/hadoop-2
For more information, see matlab.mapreduce .DeployHadoopMapReducer.

The new application maxMapreduceapp.m consists of a datastore, a mapreducer
object that specifies the deployed environment variables, a mapreduce command, and a
command to view the results of mapreduce:

ds = datastore("hdfs://hadoopOlglnxa64/datasets/airlinemod/airlinesmall.csv®, "TreatAs!

ds.SelectedVariableNames = {"Year®, "Month", "DayofMonth®, "UniqueCarrier"};

mr = mapreducer(matlab.mapreduce.DeployHadoopMapReducer (*"MCRRoot", */hd-shared/hadoop-2

result = mapreduce(ds, @maxArrivalDelayMapper, @maxArrivalDelayReducer, mr,...
"OutputType”, "Binary®, ...

"OutputFolder®, "hdfs://hadoop0lglnxa64/user/username/myresults”

)

maxMapreduceappResult = readall(result)

Compile into Standalone Application

Use the mcc command with the -m flag to create a standalone application. The -m flag
creates a standard executable that can be run from a command line. However, the mcc
command cannot package the results in an installer.

mcc -m maxmapreduceapp.-m

Create Standalone Application to Run Against Hadoop Using mec

For more information, see mcc.

MATLAB Compiler creates maxmapreduceapp -m, shell script
run_maxarrivaldelay.sh, and a log file nccExcludedfiles.log.

Run Standalone Application

Run the standalone application from MATLAB command prompt using the following
command:

I_/maxmapreduce

Key Value

"AAT [92X1 double]
"AS*" [92X1 double]
"Co- [92X1 double]
"DL*" [92X1 double]
"EA" [92X1 double]

Results display in MATLAB.

Other examples of map and reduce functions are available at toolbox/matlab/
demos folder. You can use other examples to prototype similar standalone applications
that run against Hadoop. For more information, see “Build Effective Algorithms with
MapReduce”.

You cannot deploy the examples that pass a MATLAB object from your map function to
your reduce function or from the reduce function to the final output.

See Also

matlab.mapreduce .DeployHadoopMapReducer | datastore |
KeyValueDatastore | mcc | TabularTextDatastore

Related Examples

. “Package Standalone Application with Application Compiler App”

. “Deploy Applications Created Using Parallel Computing Toolbox”

. “Deploy Standalone Applications with the Parallel Computing Toolbox”

9-11

9 Hadoop Integration

Hadoop Configuration

In this section...

“When Using Hadoop Standalone Mode” on page 9-12

“Hadoop Version Considerations” on page 9-12

When Using Hadoop Standalone Mode

To execute a deployed MATLAB application or run a deployable archive as a Hadoop
job in standalone mode, first set the appropriate environment variables in the Hadoop
environment shell:

* Modify HADOOP_CLASSPATH according to your Hadoop version.

+ If you are working with Hadoop V1, use mcr_root/toolbox/mlhadoop/jar/
al.2._.1/mwmapreduce. jar

+ If you are working with Hadoop V2, use mcr_root/toolbox/mlhadoop/jar/
a2.2.0/mwmapreduce. jar

where, mcr_root is the base of the install area for MATLAB runtime
+ Export LD_LIBRARY_PATH to include the following entries:

mer_root/runtime/glnxa64 :-mcr_root/bin/glnxa64 mcr_root/sys/os/
glnxa64 :mcr_root/sys/opengl/glnxa64

where, mcr_root is the base of the install area for MATLAB runtime

Hadoop Version Considerations

+ If you are working with Hadoop V1, improve the performance by setting
mapred.job.reuse.jvm.num.tasks to -1.

+ If you are working with Hadoop V2, the performance-improvement property is not
supported.

9-12

Hadoop Settings File

Hadoop Settings File

In creating a deployable archive, you must create a Hadoop settings file that contains
configuration details. If you are using mcc, create a text file. If you are using
deploytool, the Hadoop Compiler app automatically creates the file for you when you
select the map function, the reduce function, the input type, and the output type. You can
view the contents of your settings file in the Configuration file contents section of the
Hadoop Compiler app.

Parameter Type

Description

Default Value

mw . mapper

MATLAB map function name

Hadoop identity
map function

mw. reducer

MATLAB reduce function name

Hadoop identity
reduce function

mw.ds.in._type

MATLAB input type

The input type is of two types, tabulartext
and binary. The tabulartext input type is
a formatted text file. The file is either a source
file or result of the previous mapreduce job.
The binary input type is a sequence file.

tabulartext

mw.ds.in.forma

This parameter is valid with tabulartext
input type. This parameter specifies a .mat file
that contains a datastore.

None

mw.ds. in.keyva

This parameter is valid with binary input
type. This parameter specifies a number that
are number of rows for passing to the map
function.

mw.ds.out.type

MATLAB output type

The output type is of two types, tabulartext
and binary. The tabulartext output type
writes to a text file. The binary output type
writes to a sequence file.

binary

This example shows a settings file with tabulartext input type:

9-13

9 Hadoop Integration

mw . mapper=maxArrivalDelayMapper
mw . reducer=maxArrivalDelayReducer
mw.ds. in_type=tabulartext

mw.ds. in.format=airlinesmall _.mat
mw.ds.out.type=tabulartext

This example shows a settings file with binary input type:

mw . mapper=maxArrivalDelayMapper
mw . reducer=maxArrivalDelayReducer
mw.ds. in_type=binary
mw.ds.in_keyvaluelimit=1
mw.ds.out.type=tabulartext

Related Examples

. “Package Deployable Archive to Run Against Hadoop with Hadoop Compiler App”
on page 9-2

. “Create Deployable Archive to Run Against Hadoop Using mcc” on page 9-6

9-14

10-2

Deployment Process

This chapter tells you how to deploy compiled MATLAB code to developers and to end
users.

* “Overview” on page 11-2

* “Deploying to Developers” on page 11-3

+ “Deploying to End Users” on page 11-6

* “Working with the MATLAB Runtime” on page 11-13

+ “Deploy Applications Created Using Parallel Computing Toolbox” on page 11-34

+ “Deploying a Standalone Application on a Network Drive (Windows Only)” on page
11-35

+ “MATLAB Compiler Deployment Messages” on page 11-37
+ “Using MATLAB Compiler Generated DLLs in Windows Services” on page 11-38

+ “Reserving Memory for Deployed Applications with MATLAB Memory Shielding” on
page 11-39

11 Deployment Process

Overview

11-2

After you create a library, a deployable archive, or an application, the next step is
typically to deploy it to others to use on their machines, independent of the MATLAB
environment. These users can be developers who want to use the library to develop
an application, system administrators who want to deploy the archive to a MATLAB
Production Server instance, or end users who want to run a standalone application.

* “Deploying to Developers” on page 11-3
+ “Deploying to End Users” on page 11-6

Note: When you deploy, you provide the wrappers for the compiled MATLAB code and
the software needed to support the wrappers, including the MATLAB runtime. The
MATLAB runtime is version specific, so you must ensure that developers as well as users
have the proper version of the MATLAB runtime installed on their machines.

Watch a Video

Watch a video about deploying applications using MATLAB Compiler.

Deploying to Developers

Deploying to Developers

In this section...

“Procedure” on page 11-3
“What Software Does a Developer Need?” on page 11-3
“Ensuring Memory for Deployed Applications” on page 11-5

Procedure

Note: If you are programming on the same machine where you created the library, you
can skip the steps described here.

1 Create a package that contains the software necessary to support the compiled
MATLAB code. It is frequently helpful to install the MATLAB runtime on
development machines, for testing purposes. See “What Software Does a Developer
Need?” on page 11-3

2 Write instructions for how to use the package.

a If your library was created with the compiler app, developers can just run the
installer generated by the compiler.
b All developers must set path environment variables properly. See “MATLAB
Runtime Path Settings for Development and Testing” on page 18-2.
3 Distribute the package and instructions.

What Software Does a Developer Need?

The software that you provide to a developer who wants to use compiled MATLAB code
depends on which of the following kinds of software the developer will be using:

+ “Standalone Application” on page 11-3
* “C or C++ Shared Library” on page 11-4

Standalone Application

To distribute a standalone application created with MATLAB Compiler to a development
machine, create a package that includes the following files.

11-3

11 Deployment Process

11-4

Software Module

Description

MATLAB Runtime Installer
(Windows)

The MATLAB runtime Installer is a self-extracting
executable that installs the necessary components to

run your application. This file is included with MATLAB
Compiler. Run mcrinstal ler function to obtain name of
executable.

MATLAB runtime Installer
(Linux)

The MATLAB Runtime Installer is a self-extracting
executable that installs the necessary components to
run your application on UNIX machines (other than
Mac). This file is included with MATLAB Compiler. Run
mcrinstal ler function to obtain name of binary.

MATLAB Runtime Installer
Mac)

Run mcrinstal ler function to obtain name of binary.

application _name .exe
(Windows)

Application created by MATLAB Compiler. Maci64 must
include the bundle directory hierarchy.

application _name (UNIX)

application_name .app

Maci64)

C or C++ Shared Library

To distribute a shared library created with MATLAB Compiler to a development
machine, create a package that includes the following files.

Software Module

Description

MATLAB Runtime Installer
(Windows)

MATLAB Runtime library archive; platform-dependent
file that must correspond to the end user's platform. Run
mcrinstal ler function to obtain name of executable.

MATLAB Runtime Installer
Mac)

The MATLAB Runtime Installer is a self-extracting
executable that installs the necessary components to run
your application on Mac machines. This file is included
with MATLAB Compiler. Run mcrinstal ler function to
obtain name of binary.

MATLAB Runtime Installer
(Linux)

Self-extracting MATLAB Runtime library utility;
platform-dependent file that must correspond to the end
user's platform. Run mcrinstal ler function to obtain
name of binary.

Deploying to Developers

Software Module

Description

libmatrix

Shared library; extension varies by platform, for example,
DLL on Windows

libmatrix.h

Library header file

libmatrix.lib

Application library file needed to create the driver
application for the shared library.

Ensuring Memory for Deployed Applications

If you are having trouble obtaining memory for your deployed application, use MATLAB
Memory Shielding for deployed applications to ensure a maximum amount of contiguous
allocated memory. See “Reserving Memory for Deployed Applications with MATLAB
Memory Shielding” on page 11-39 for more information.

11-5

11 Deployment Process

Deploying to End Users

11-6

In this section...

“Steps by the Developer to Deploy to End Users” on page 11-6

“What Software Does the End User Need?” on page 11-8

“Using Relative Paths with Project Files” on page 11-11

“Porting Generated Code to a Different Platform” on page 11-11

“Extracting a Deployable Archive Without Executing the Contents” on page 11-11

“Ensuring Memory for Deployed Applications” on page 11-12

Steps by the Developer to Deploy to End Users

For an end user to run an application or use a library that contains compiled MATLAB
code, there are two sets of tasks. Some tasks are for the developer who developed the
application or library, and some tasks are for the end user.

1 Create a package that contains the software needed at run time. See “What Software
Does a Developer Need?” on page 11-3 for more details.

Note: The package for end users must include the .ctf file, which includes all
the files in your preferences folder. Be aware of the following with regards to
preferences:

+ MATLAB preferences set at compile time are inherited by the compiled
application. Therefore, include no files in your preferences folder that you do
not want exposed to end users.

+ Preferences set by a compiled application do not affect the MATLAB
preferences, and preferences set in MATLAB do not affect a compiled
application until that application is recompiled. MATLAB does not save
your preferences folder until you exit MATLAB. Therefore, if you change
your MATLAB preferences, stop and restart MATLAB before attempting to
recompile using your new preferences.

The preferences folder is as follows:

Deploying to End Users

2
3

* $HOME/ .matlab/current_release on UNIX

+ system root\profiles\user\application data\mathworks\
matlab\current_release on Windows

The folder will be stored in the deployable archive in a folder with a generated

name, such as:

mwapplication_mcr
\myapplication_7CBEDC3E1DB3D462C18914C13CBFA649.

Write instructions for the end user. See Steps by the End User.
Distribute the package to your end user, along with the instructions.

Procedure 11.3. Steps by the End User

1
2

Open the package containing the software needed at run time.

Run MCRInstal ler once on the target machine, that is, the machine where you
want to run the application or library. The MCRInstal ler opens a command
window and begins preparation for the installation. See Using the MATLAB
Runtime Installer.

If you are deploying a Java application to end users, they must set the class path on
the target machine.

Note for Windows Applications You must have administrative privileges to install the
MATLAB runtime on a target machine since it modifies both the system registry and the
system path.

Running the MCRInstal ler after the MATLAB runtime has been set up on the target
machine requires only user-level privileges.

Procedure 11.4. Using the MATLAB Runtime Installer

1

2

When the MATLAB Runtime Installer wizard appears, click Next to begin the
installation. Click Next to continue.

In the Select Installation Folder dialog box, specify where you want to install the
MATLAB runtime and whether you want to install the runtime for just yourself or
others. Click Next to continue.

11-7

11 Deployment Process

11-8

Note The Install MATLAB Runtime for yourself, or for anyone who uses

this computer option is not implemented for this release. The current default is
Everyone.

Confirm your selections by clicking Next.

The installation begins. The process takes some time due to the quantity of files that
are installed.

The installer automatically:

+ Copies the necessary files to the target folder you specified.
* Registers the components as needed.

+ Updates the system path to point to the MATLAB runtime binary folder, which is
<target_directory>\<version>\runtime\win32|win64.

When the installation completes, click Close on the Installation Completed dialog

box to exit.

What Software Does the End User Need?

The software required by end users depends on which of the following kinds of software is
to be run by the user:

“Standalone Compiled Application That Accesses Shared Library” on page 11-8
“NET Application” on page 11-9

“COM Application” on page 11-9

“Java Application” on page 11-10

“Microsoft Excel Add-in” on page 11-10

Standalone Compiled Application That Accesses Shared Library

To distribute a shared library created with MATLAB Compiler to end users, create a
package that includes the following files.

Component Description

MATLAB Runtime Self-extracting MATLAB Runtime library utility; platform-
Installer dependent file that must correspond to the end user's
(Windows) platform.

Deploying to End Users

Component

Description

matrixdriver.exe
(Windows)
matrixdriver
(UNIX)

Application

libmatrix

Shared library; extension varies by platform. Extensions
are:

Windows — .dll
* Linux, Linux x86-64 — .so
* MacOSX— .dylib

.NET Application

To distribute a .NET application that uses assemblies created with MATLAB Builder
NE, create a package that includes the following files.

Software Module

Description

assemblyName . xml

Documentation files

assemblyName . pdb
(if Debug option is
selected)

Program Database File, which contains debugging
information

assemblyName .dl1

Compiled assembly file

MATLAB Runtime
Installer

MATLAB Runtime Installer (if not already installed on the
target machine). Run mcrinstal ler function to obtain
name of executable.

application.exe

Application

COM Application

To distribute a COM application that uses components created with MATLAB Builder
NE or MATLAB Builder EX, create a package that includes the following files.

Software Module

Description

componentname .ctf

Deployable archive. This is a platform-dependent file
that must correspond to the end user's platform.

11-9

11 Deployment Process

11-10

Software Module

Description

componentname
_version.dll

Component that contains compiled MATLAB code

_install_bat

Script run by the self-extracting executable

MATLAB Runtime Installer

Self-extracting MATLAB Runtime library utility;
platform-dependent file that must correspond to the
end user's platform.

The MATLAB Runtime Installer installs MATLAB
Runtime, which users of your component need to
install on the target machine once per release. Run
mcrinstal ler function to obtain name of executable.

application.exe

Application

Java Application

To distribute a Java application created with MATLAB Builder JA, create a
packageName . jar file. To deploy the application on computers without MATLAB, you
must include the MATLAB runtime when creating your Java package.

Microsoft Excel Add-in

To distribute an Excel add-in created with MATLAB Builder EX, create a package that

includes the following files.

Software Module

Description

addinName
_version.dll

Add-in that contains compiled MATLAB code

_install_bat

Script run by the self-extracting executable

MATLAB Runtime Installer

Self-extracting MATLAB runtime library utility;
platform-dependent file that must correspond to the
end user's platform. Run mcrinstal ler function to
obtain name of executable.

*_xla

Any Excel add-in files found in
projectdirectory\distrib

Deploying to End Users

Using Relative Paths with Project Files

Project files now support the use of relative paths as of R2007b of MATLAB Compiler,
enabling you to share a single project file for convenient deployment over the network.
Simply share your project folder and use relative paths to define your project location to
your distributed computers.

Porting Generated Code to a Different Platform

You can distribute an application generated by MATLAB Compiler to any target machine
that has the same operating system as the machine on which the application was
compiled. For example, if you want to deploy an application to a Windows machine,

you must use the Windows version of MATLAB Compiler to build the application on a
Windows machine.

Note: Since binary formats are different on each platform, the artifacts generated by
MATLAB Compiler cannot be moved from platform to platform as is.

To deploy an application to a machine with an operating system different from the
machine used to develop the application, you must rebuild the application on the desired
targeted platform. For example, if you want to deploy a previous application developed
on a Windows machine to a Linux machine, you must use MATLAB Compiler on a
Linux machine and completely rebuild the application. You must have a valid MATLAB
Compiler license on both platforms to do this.

Extracting a Deployable Archive Without Executing the Contents

Deployable archives contain content (MATLAB files and MEX-files) that need to be
extracted from the archive before they can be executed. In order to extract the archive
you must override the default deployable archive embedding option (see “MATLAB
Runtime Component Cache and Deployable Archive Embedding” on page 13-10). To
do this, ensure that you run the compiler with the option.

The deployable archive automatically expands the first time you run a MATLAB
Compiler generated artifact.

To expand an archive without running the application, you can use the extractCTF
(.exe on Windows) standalone utility provided in the matlabroot\toolbox\compiler

11-11

11 Deployment Process

11-12

\arch folder, where arch is your system architecture, Windows = win32 |win64, Linux
=glInx86, x86-64 = glnxa64, and Mac OS X = mac. This utility takes the deployable
archive as input and expands it into the folder in which it resides. For example, this
command expands hel lo.ctf into the folder where it resides:

extractCTF hello.ctf

The archive expands into a folder called hello_mcr. In general, the name of the folder
containing the expanded archive is <componentname>_mcr, where componentname is
the name of the deployable archive without the extension.

Note To run extractCTF from any folder, you must add matlabroot\toolbox
\compiler\arch to your PATH environment variable. Run extractCTF.exe from a
system prompt. If you run it from MATLAB, be sure to use the bang (1) operator.

Ensuring Memory for Deployed Applications

If you are having trouble obtaining memory for your deployed application, use MATLAB
Memory Shielding for deployed applications to ensure a maximum amount of contiguous
allocated memory. See “Reserving Memory for Deployed Applications with MATLAB
Memory Shielding” on page 11-39 for more information.

Working with the MATLAB Runtime

Working with the MATLAB Runtime

In this section...

“About the MATLAB Runtime” on page 11-13

“The MATLAB Runtime Installer” on page 11-14

“Installing the MATLAB Runtime Non-Interactively” on page 11-22
“Uninstalling the MATLAB Runtime” on page 11-24

“MATLAB Runtime Startup Options” on page 11-27

“Using the MATLAB Runtime User Data Interface” on page 11-30

“Displaying MATLAB Runtime Initialization Start-Up and Completion Messages For
Users” on page 11-32

About the MATLAB Runtime

The MATLAB runtime is a standalone set of shared libraries that enables the execution
of MATLAB files on computers without an installed version of MATLAB. Applications
that use artifiacts built with MATLAB Compiler require access to an appropriate version
of the MATLAB runtime to run.

End-users of compiled artifacts without access to MATLAB must install the MATLAB
runtime on their computers or know the location of a network-installed MATLAB
runtime. The installers generated by the compiler app include the MATLAB runtime
installer. If you compiled your artifact using mcc, you should direct your end-users to
download the MATLAB runtime installer from the Web at http://www.mathworks.com/
products/compiler/mcr.

See “The MATLAB Runtime Installer” on page 11-14 for more information.
How is the MATLAB Runtime Different from MATLAB?
The MATLAB runtime differs from MATLAB in several important ways:

* In the MATLAB runtime, MATLAB files are securely encrypted for portability and
integrity.

*+ MATLAB has a desktop graphical interface. The MATLAB runtime has all the
MATLAB functionality without the graphical interface.

* The MATLAB runtime is version-specific. You must run your applications with the
version of the MATLAB runtime associated with the version of MATLAB Compiler

11-13

http://www.mathworks.com/products/compiler/mcr
http://www.mathworks.com/products/compiler/mcr

11 Deployment Process

11-14

with which it was created. For example, if you compiled an application using version
4.10 (R2009a) of MATLAB Compiler, users who do not have MATLAB installed must
have version 7.10 of the MATLAB runtime installed. Use mcrversion to return the
version number of the MATLAB runtime.

* The MATLAB and Java paths in an MATLAB runtime instance are fixed and cannot
be changed. To change them, you must first customize them within MATLAB.

Performance Considerations and the MATLAB Runtime

MATLAB Compiler was designed to work with a large range of applications that use the
MATLAB programming language. Because of this, run-time libraries are large.

Since the MATLAB runtime technology provides full support for the MATLAB language,
including the Java programming language, starting a compiled application takes
approximately the same amount of time as starting MATLAB. The amount of resources

consumed by the MATLAB runtime is necessary in order to retain the power and
functionality of a full version of MATLAB.

The MATLAB runtime makes use of thread locking so that only one thread is allowed to
access the MATLAB runtime at a time. As a result, calls into the MATLAB runtime are
threadsafe for MATLAB Compiler generated libraries, COM objects, and .NET objects.
On the other hand, this can impact performance.

The MATLAB Runtime Installer

Download the MATLAB runtime from the Web at http:/www.mathworks.com/products/
compiler/mcr.

Installing the MATLAB Runtime

To install the MATLAB runtime, users of your application must run theMATLAB
Runtime Installer.

Note: When packaging compiled MATLAB code for distribution, MATLAB Compiler
can include the Web-based or the local MATLAB runtime installer in the distribution
package.

To install the MATLAB runtime:

http://www.mathworks.com/products/compiler/mcr
http://www.mathworks.com/products/compiler/mcr

Working with the MATLAB Runtime

1 Start the MATLAB Runtime Installer.

Computer

Steps

Windows

Double-click the compiled MATLAB code package self-extracting
archive file, typically named my_program_pkg.exe, where
my_program is the name of the MATLAB code. This extracts
the MATLAB Runtime Installer from the archive, along with

all the files that make up the MATLAB runtime. Once all the
files have been extracted, the MATLAB Runtime Installer starts
automatically.

Linux

Mac

Extract the contents of the compiled package, which is a Zip
file on Linux systems, typically named, my program_pkg.zip,
where my_program is the name of the compiled MATLAB code.
Use the unzip command to extract the files from the package.

unzip MCRInstaller.zip

Run the MATLAB Runtime Installer script, from the directory
where you unzipped the package file, by entering:

-/install

For example, if you unzipped the package and MATLAB
Runtime Installer in \home\USER, you run the ./install from
\home\USER.

Note: On Mac systems, you may need to enter an administrator
username and password after you run ./install.

2 When the MATLAB Runtime Installer starts, it displays the following dialog box.
Read the information and then click Next to proceed with the installation.

11-15

11 Deployment Process

“

“ 4 MATLAB'Compﬁer Runtime Installer o= |-G

To install MATLAB Compiler Runtime on your computer, click Next.

MATLAB

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. Please see
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

WARNING: This program is protected by copyright law and international treaties. Copyright
1984-2012, The MathWorks, Inc. Protected by U.S. and other patents. See MathWorks.com/patents

J MathWorks

Click Next.

3 Specify the folder in which you want to install the MATLAB runtime in the Folder
Selection dialog box.

Note: On Windows systems, you can have multiple versions of the MATLAB runtime
on your computer but only one installation for any particular version. If you already
have an existing installation, the MATLAB runtime Installer does not display

the Folder Selection dialog box because you can only overwrite the existing
installation in the same folder.

11-16

Working with the MATLAB Runtime

Specify Iinstallation folder.

4\ Folder Selection
Specify installation folder

Enter the full path to the installation folder:

|C:\Program Files\MATLAB\MATLAB Compiler Runtime

Nex

[E= EOR =X

MATLAB

Browse...

Restore Default Folder]

Space available: 110,265 MB Space required: 1,034 MB

Cancel

) MathWorks*

>

[
Click Next.

4 Confirm your choices and click Next.

The MATLAB Runtime Installer starts copying files into the installation folder.

11-17

11 Deployment Process

Con firm your choices.

N 4 Conﬁrmatfon

Installation folder: j
CAProgram Files\MATLAB\MATLAB Compiler Runtime

MATLAB

Products:
MATLAB Compiler Runtime

s) MatkWorks

Click Install.

5 On Linux and Macintosh systems, after copying files to your disk, the MATLAB
Runtime Installer displays the Product Configuration Notes dialog box. This
dialog box contains information necessary for setting your path environment
variables. Copy the path information from this dialog box and then click Next.

11-18

Working with the MATLAB Runtime

& = ’ Product Tentgurstion Nates Ny el lel i

Your instailation may require additional configuration steps.

| On the targetl computer, appeand the following to vour LD _LIBRARY_PATH environment MA’FI ‘A l}'
variable

/home fjeustoma/Documents MATLAB /MATLAB _Compiter_Runtime /vB0/rumime/ginxas
| 4 /home jeustome/Documents /MAT LAB /MATLAB_Compller_Runtime v80/binjginxac4 /
| home ficustomea/Documents /MATLAB/MATLAS _Complier_Runtime /B0 fsysfosfginxacd /
home gcustome [Documents /MATLAB/MATLAB _Compiler_Runtime VB0 f$ys/java/jre/ginx
at4d [jrelibfamat4 /natve threads fhome/jeustome/Documents /MATLAB/MATLAE Com
piler_Runtime /v80/sys/java/jre/ginxatd /jre/lib/amded fservar. Jhome /joustoma/Docu

{ ments/MATLAB/MATLAB_Compiier_Runtime VB0 /sys/Java/jrefginzasd /jreflibfamdcs

‘ Next, st the XAPPLRESDIR environment vanable 10 the following value

| /home foustome/Documents/MATLAB /MATLAE_Compiler_Runtime /v80 /X 11 /app-defau
Its
|

Click Next.

6 Click Finish to exit the installer.

11-19

11 Deployment Process

11-20

A\ Installation Complete

Installation is complete.

< }. MathWorks'

I
Click Finish.

MATLAB Runtime Installer Readme File

A readme. txt file is included with the MATLAB Runtime Installer. This file, visible
when the MATLAB Runtime Installer is expanded, provides more detailed information
about the installer and the switches that can be used with it.

Installing the MATLAB Runtime and MATLAB on the Same Machine

You do not need to install the MATLAB runtime on your machine if your machine has
both MATLAB and MATLAB Compiler installed. The version of MATLAB should be the
same as the version of MATLAB that was used to create the compiled MATLAB code.

You can, however, install the MATLAB runtime for debugging purposes. See “Modifying
the Path” on page 11-21.

Working with the MATLAB Runtime

Caution If the target machine has a MATLAB installation, the <mcr_root> folders must
be first on the path to run the deployed application. To run MATLAB, the matlabroot
folders must be first on the path.

Modifying the Path

If you install the MATLAB runtime on a machine that already has MATLAB on it, you
must adjust the library path according to your needs.

+ Windows

To run deployed MATLAB code against the MATLAB runtime install,
mcr_root\ver\runtime\win32|win64 must appear on your system path before
matlabroot\runtime\win32|win64.

If mer_root\ver\runtime\arch appears first on the compiled application path, the
application uses the files in the MATLAB runtime install area.

If matlabroot\runtime\arch appears first on the compiled application path, the
application uses the files in the MATLAB Compiler installation area.

+ UNIX

To run deployed MATLAB code against the MATLAB runtime install, on Linux,
Linux x86-64, or the <mcr_root>/runtime/<arch> folder must appear on your
LD_LIBRARY_PATH before matlabroot/runtime/<arch>. See “MATLAB Runtime
Path Settings for Run-time Deployment” on page 18-4 for the platform-specific
commands.

To run deployed MATLAB code on Mac OS X, the <mcr_root>/runtime folder must
appear on your DYLD_ LIBRARY_PATH before matlabroot/runtime/<arch>.

To run MATLAB on Mac OS X or Intel® Mac, matlabroot/runtime/<arch> must
appear on your DYLD LIBRARY_PATH before the <mcr_root>/bin folder.

Note: For detailed information about setting MATLAB runtime paths on UNIX
variants such as Mac and Linux, see Appendix B for complete deployment and
troubleshooting information.

11-21

11 Deployment Process

Installing Multiple MATLAB Runtimes on a Single Machine

MCRInstal ler supports the installation of multiple versions of the MATLAB runtime
on a target machine. This allows applications compiled with different versions of the
MATLAB runtime to execute side by side on the same machine.

If you do not want multiple MATLAB runtime versions on the target machine, you
can remove the unwanted ones. On Windows, run Add or Remove Programs from
the Control Panel to remove any of the previous versions. On UNIX, you manually
delete the unwanted MATLAB runtime. You can remove unwanted versions before or
after installation of a more recent version of the MATLAB runtime, as versions can be
installed or removed in any order.

Note for Mac OS X Users Installing multiple versions of the MATLAB runtime on

the same machine is not supported on Mac OS X. When you receive a new version of
MATLAB, you must recompile and redeploy all of your applications. Also, when you
install a new MATLAB runtime onto a target machine, you must delete the old version
of the MATLAB runtime and install the new one. You can only have one version of the
MATLAB runtime on the target machine.

Deploying a Recompiled Application

Always run your compiled applications with the version of the MATLAB runtime that
corresponds to the MATLAB version with which your application was built. If you
upgrade your MATLAB Compiler software on your development machine and distribute
the recompiled application to your users, you should also distribute the corresponding
version of the MATLAB runtime. Users should upgrade their MATLAB runtime to the
new version. If users need to maintain multiple versions of the MATLAB runtime on
their systems, refer to “Installing Multiple MATLAB Runtimes on a Single Machine” on
page 11-22 for more information.

Installing the MATLAB Runtime Non-Interactively

To install the MATLAB runtime without having to interact with the installer dialog
boxes, use one of the MATLAB runtime installer’s non-interactive modes:

+ silent—the installer runs as a background task and does not display any dialog boxes

* automated—the installer displays the dialog boxes but does not wait for user
interaction

11-22

Working with the MATLAB Runtime

When run in silent or automated mode, the MATLAB runtime installer uses default
values for installation options. You can override these defaults by using MATLAB
runtime installer command-line options or an installer control file.

Note: When running in silent or automated mode, the installer overwrites the default
installation location.

Running the Installer in Silent Mode

To install the MATLAB runtime in silent mode:

1

Extract the contents of the MATLAB runtime installer file to a temporary folder,
called $temp in this documentation.

Note: On Windows systems, manually extract the contents of the installer file.
Run the MATLAB runtime installer, specifying the -mode option and -
agreeTolLicense yes on the command line.

Note: On most platforms, the installer is located at the root of the folder into which

the archive was extracted. On Windows 64, the installer is located in the archives
bin folder.

Platform Command

Windows setup -mode silent -
agreeTolLicense yes

Linux ./install -mode silent -
agreeTolLicense yes

Mac OS X -/install -mode silent -

agreeTolLicense yes

Note: If you do not include the —agreeToLicense yes the installer will not install
the MATLAB runtime.
View a log of the installation.

11-23

11 Deployment Process

11-24

On Windows systems, the MATLAB runtime installer creates a log file, named
mathworks_username . 1og, where username is your Windows log-in name, in the
location defined by your TEMP environment variable.

On Linux and Mac systems, the MATLAB runtime installer displays the log
information at the command prompt, unless you redirect it to a file.

Customizing a Non-Interactive Installation

When run in one of the non-interactive modes, the installer will use the default
values unless told to do otherwise. Like the MATLAB installer, the MATLAB runtime

installer accepts a number of command line options that modify the default installation
properties.

Option Description

-destinationFolder Specifies where the MATLAB runtime will
be installed.

-outputFile Specifies where the installation log file is
written.

-automatedModeTimeout Specifies how long, in milliseconds, that

the dialog boxes are displayed when run in
automatic mode.

—-inputFile Specifies an installer control file with the
values for all of the above options.

Note: The MATLAB runtime installer archive includes an example installer control file
called installer_input.txt. This file contains all of the options available for a full

MATLAB installation. Only the options listed in this section are valid for the MATLAB
runtime installer.

Uninstalling the MATLAB Runtime

The method you use to uninstall the MATLAB runtime from your computer varies
depending on the type of computer.

You can remove unwanted versions before or after installation of a more recent version of
the MATLAB runtime, as versions can be installed or removed in any order.

Working with the MATLAB Runtime

Windows

1 Start the uninstaller. From the Windows Start menu, search for the Add
or Remove Programs control panel, and double-click MATLAB runtime
in the list. You can also launch the MATLAB Runtime Uninstaller from the
mer_root\uninstal I\bin\arch folder, where mcr_root is your MATLAB
runtime installation folder and arch is an architecture-specific folder, such as

win64.

2 Select the MATLAB runtime from the list of products in the Uninstall Products

dialog box and click Next.

e

i 4\ Uninstall Products

Please select the products you want to remove.

Uninstalling from: C:\Program Files\MATLAB\MATLAB Compiler Runtime\v81

¥l Product
[7] | MATLAB Compiler Runtime

[E= EoR =X

MATLAB

) MathWorks*

-

Click Uninstall.

3 After the MATLAB runtime uninstaller removes the files from your disk, it displays
the Uninstallation Complete dialog box. Click Finish to exit the uninstaller.

11-25

11 Deployment Process

=

: 4\ Uninstallation Complete E@

There may be some remaining files in C:\Program Files\MATLAB\MATLAB Compiler Runtime\
You can manually delete them.

MATLAB

. Finsh | i MathWorks*

7

I
Click Finish.

Linux

1 Exit the application.

2 Enter this command at the Linux prompt:

rm -rf mcr_root

where mcr_root represents the name of your top-level MATLAB installation folder.
Mac

+ Exit the application.

+ Navigate to your MATLAB runtime installation folder. For example, the installation
folder might be named MATLAB_Compi ler_Runtime.app in your Applications folder.

* Drag your MATLAB runtime installation folder to the trash, and then select Empty
Trash from the Finder menu.

11-26

Working with the MATLAB Runtime

MATLAB Runtime Startup Options
Setting MATLAB Runtime Options

Set MATLAB runtime options, such as —-nojvm, -nodisplay, or -logfile by
performing either of the following tasks.

* Using the Additional Runtime Settings area of the compiler apps.
+ Using the mcc command, specify the -R switch.

Using a Compiler App

In the Additional Runtime Settings area of the compiler apps, you can set the
following options.

Note: Not all options are available for all compilation targets.

Setting MATLAB Runtime Startup Options Using the Compiler Apps

MATLAB Runtime Startup This option... Set the options by...
Option
-nojvm Disables the Java Virtual Select the No JVM

Machine, which is enabled |checkbox.
by default. This can help
improve the runtime

box.

performance.

-nodisplay On Linux, launches the In the Settings box, enter -
runtime without display R -nodisplay.
functionality.

-logfile Writes information about Select the Create log file
the runtime startup to a checkbox. Enter the path
logfile. to the logfile, including the

logfile name, in the Log File

Setting MATLAB Runtime Startup Options Using the mcc Command Line

When you use the command line, specify the -R switch to invoke the MATLAB runtime

startup options you want to use.

11-27

11 Deployment Process

Following are examples of using mcc -R to invoke -nojvm, —-nodisplay, and -logfile
when building a C standalone (designated by the -m switch).

Setting -nojvm

mcc -m -R -nojvm -v foo.m

Setting -nodisplay (Linux Only)

mcc -m -R -nodisplay -v foo.m

Setting -logfile

mcc -e -R "-logfile,bar.txt” -v foo.m

Setting -nojvm, -nodisplay, and -logfile With One

Command

mcc -m -R "-logfile,bar.txt,-nojvm,-nodisplay”™ -v foo.m

Retrieving MATLAB Runtime Startup Options (Shared Libraries Only)

Use these functions to return data about MATLAB runtime state when working with

shared libraries.

Function and Signature

When to Use

Return Value

bool
mclIsMCRInitialized()

Use mclIsMCRInitialized()
to determine whether or not
the runtime has been properly
initialized.

Boolean (true or false).
Returns true if runtime is
already initialized, else returns
false.

bool mcllsJVMEnabled()

Use mcl I1sJVMEnabled() to
determine if the runtime was
launched with an instance of a
Java Virtual Machine (JVM).

Boolean (true or false).
Returns true if runtime is
launched with a JVM instance,
else returns false.

11-28

Setting -nojvm, -nodisplay, and -logfile With One Command

Function and Signature

When to Use

Return Value

const char*
mclGetLogFileName()

Use mclGetLogFileName() to
retrieve the name of the log file
used by the runtime

Character string representing
log file name used by the
runtime

bool mcllsNoDisplaySet()

Use mclIsNoDisplaySet()
to determine if —-nodisplay
option is enabled.

Boolean (true or false).
Returns true if -nodisplay is
enabled, else returns false.

Note: false is always returned
on Windows systems since

the —nodisplay option is not
supported on Windows systems.

Caution When running on

Mag, if -nodisplay is used as
one of the options included in
mcllnitializeApplication,
then the call to
mclInitializeApplication
must occur before calling
mclRunMain

Note: All of these attributes have properties of write-once, read-only.

Refrieving Information About MATLAB Runtime Startup Options

const char* options[4];

options[0] =
options[1]
options[2]
options[3]

"-logfile";
"logfile_txt";
"-nojvm";
"-nodisplay";

if(ImclInitializeApplication(options,4))

{

fprintf(stderr,
"Could not initialize the application.\n");

11-29

11 Deployment Process

11-30

return -1;

}
printfF("MCR initialized : %d\n", mclIsMCRInitialized());

printfF("IVM initialized : %d\n", mcllsJVMEnabled());
printf(""Logfile name : %s\n', mclGetLogFileName());
printf(""nodisplay set : %d\n'", mcllsNoDisplaySet());
Ffflush(stdout);

Using the MATLAB Runtime User Data Interface

The MATLAB runtime User Data Interface lets you easily access MATLAB runtime
data. It allows keys and values to be passed between an MATLAB runtime instance,
the MATLAB code running on the runtime, and the host application that created the
runtime instance. Through calls to the MATLAB Runtime User Data Interface API, you
access MATLAB runtime data by creating a per-runtime-instance associative array of
mxArrays, consisting of a mapping from string keys to mxArray values. Reasons for
doing this include, but are not limited to the following:

* You need to supply run-time profile information to a client running an application
created with the Parallel Computing Toolbox. You supply and change profile
information on a per-execution basis. For example, two instances of the same
application may run simultaneously with different profiles. See “Deploy Applications
Created Using Parallel Computing Toolbox” on page 11-34 for more information.

* You want to set up a global workspace, a global variable or variables that MATLAB
and your client can access.

* You want to store the state of any variable or group of variables.
The API consists of:
* Two MATLAB functions callable from within deployed application MATLAB code

+ Four external C functions callable from within deployed application wrapper code

Note: The MATLAB functions are available to other modules since they are native to
MATLAB. These built-in functions are implemented in the MCLMCR module, which
lives in the standalone folder.

For implementations using .NET assemblies, Java packages, or COM components with
Excel, see the MATLAB Builder NE, MATLAB Builder JA, and MATLAB Builder EX
documentation, respectively.

Setting -nojvm, -nodisplay, and -logfile With One Command

MATLAB Functions

Use the MATLAB functions getmcruserdata and setmcruserdata from deployed
MATLAB applications. They are loaded by default only in applications created with the
MATLAB Compiler or builder products. See “Using the MATLAB Runtime User Data
Interface” on page 11-30 for more information.

Tip getmcruserdata and setmcruserdata will produce an Unknown function error
when called in MATLAB if the MCLMCR module cannot be located. This can be avoided
by calling isdeployed before calling getmcruserdata and setmcruserdata. For
more information about the isdeployed function, see the isdeployed reference page.

Setting MATLAB Runtime Data for Standalone Executables

MATLAB runtime data can be set for a standalone executable with the -mcruserdata
command line argument.

The following example demonstrates how to set MATLAB runtime user data for use with
a Parallel Computing Toolbox profile:

parallelapp.exe -mcruserdata
ParallelProfile:config.settings

The argument following -mcruserdata is interpreted as a key/value MATLAB runtime
user data pair, where the colon separates the key from the value. The standalone
executable accesses this data by using getmcruserdata.

Note: A compiled application should set mcruserdata ParallelProfile before
calling any Parallel Computing Toolbox code. Once this code has been called, setting
ParallelProfile to point to a different file has no effect.

Setting and Retrieving MATLAB Runtime Data for Shared Libraries

As mentioned in “Using the MATLAB Runtime User Data Interface” on page 11-30,
there are many possible scenarios for working with MATLAB runtime data. The most
general scenario involves setting the MATLAB runtime with specific data for later
retrieval, as follows:

11-31

11 Deployment Process

11-32

5

6

In your code, include the MATLAB runtime header file and the library header
generated by MATLAB Compiler.

Properly initialize your application using mclInitializeApplication.

After creating your input data, write or “set” it to the MATLAB runtime with
setmcruserdata .

After calling functions or performing other processing, retrieve the new MATLAB
runtime data with getmcruserdata

Free up storage memory in work areas by disposing of unneeded arrays with
mxDestroyArray.

Shut down your application properly with mclTerminateApplication.

Displaying MATLAB Runtime Initialization Start-Up and Completion
Messages For Users

You can display a console message for end users that informs them when MATLAB
runtime initialization starts and completes.

To create these messages, use the -R option of the mcc command.

You have the following options:

Use the default start-up message only (Initializing MATLAB Compiler Runtime
version Xx.xX)

Customize the start-up or completion message with text of your choice. The default
start-up message will also display prior to displaying your customized start-up
message.

Some examples of different ways to invoke this option follow:

This command: Displays:

mcc -R -startmsg Default start-up message Initializing

MATLAB Compiler Runtime version
X . XX

mcc -R -startmsg, "user customized |Default start-up message Initializing
message* MATLAB Compiler Runtime version

Xx.xx and user customized message for
start-up

Setting -nojvm, -nodisplay, and -logfile With One Command

This command:

Displays:

mcc -R -completemsg, "user
customized message*

Default start-up message Initializing
MATLAB Compiler Runtime version
X.xx and user customized message for
completion

mcc -R -startmsg, "user customized
message® -R -completemsg, "user
customized message'

Default start-up message Initializing
MATLAB Compiler Runtime version
X.xXx and user customized message for
both start-up and completion by specifying
-R before each option

mcc -R -startmsg, “"user customized
message*® ,-completemsg, "user
customized message'

Default start-up message Initializing
MATLAB Compiler Runtime version
X.xx and user customized message for
both start-up and completion by specifying
-R only once

Best Practices

Keep the following in mind when using mcc -R:

* When calling mcc in the MATLAB Command Window, place the comma inside the

single quote. For example:

mcc -m hello.m -R "-startmsg,'Message Without_Space™~

+ If your initialization message has a space in it, call mcc from the system console or

use 'mcc from MATLAB.

11-33

11 Deployment Process

Deploy Applications Created Using Parallel Computing Toolbox

11-34

Package and Deploy a Shared Library with the Parallel Computing
Toolbox

The process of deploying a C or C++ shared library with the Parallel Computing Toolbox
is similar to deploying a standalone application.

1 Package the shared library using the deploytool.

2 Set the file in the C or C++ driver code using the setmcruserdata function. See the
setmcruserdata function reference page for an example.

Note: Standalone executables and shared libraries generated from MATLAB Compiler
for parallel applications can now launch up to twelve local workers without MATLAB
Distributed Computing Server™.

Related Examples
“Create Standalone Application to Run Against Hadoop Using mecc”

Deploying a Standalone Application on a Network Drive (Windows Only)

Deploying a Standalone Application on a Network Drive
(Windows Only)

You can deploy a compiled standalone application to a network drive so that it can be
accessed by all network users without having them install the MATLAB runtime on their
individual machines.

Note: There is no need to perform these steps on a Linux system.

There is no requirement for vcredist on Linux, and the component registration is
in support of MATLAB Builder EX and MATLAB COM Builder, which both run on
Windows only.

Distributing to a Linux network file system is exactly the same as distributing to a local
file system. You only need to set up the LD_LIBRARY_PATH or use scripts which points to
the MATLAB runtime installation.

1 On any Windows machine, run mcrinstal ler function to obtain name of the
MATLAB Runtime Installer executable.

2 Copy the entire MATLAB runtime folder onto a network drive.

Copy the compiled application into a separate folder in the network drive and add
the path <mcr_root>\<ver>\runtime\<arch> to all client machines. All network
users can then execute the application.

4 Run vcredist_x86.exe on for 32-bit clients; run vcredist_x64.exe for 64-bit
clients.

5 If you are using MATLAB Builder EX, register mwcomutil.dll and mwcommgr.dll
on every client machine.

If you are using MATLAB Builder NE (to create COM objects), register
mwcomutil.dll on every client machine.

To register the DLLs, at the DOS prompt enter

mwregsvr <fully qualified_pathname\dllname.dll>

These DLLs are located in <mcr_root>\<ver>\runtime\<arch>.

11-35

11 Deployment Process

Note: These libraries are automatically registered on the machine on which the
installer was run.

11-36

MATLAB Compiler Deployment Messages

MATLAB Compiler Deployment Messages

To enable display of MATLAB Compiler deployment messages, see the MATLAB Desktop
Tools and Environment documentation.

11-37

11 Deployment Process

Using MATLAB Compiler Generated DLLs in Windows Services

11-38

If you have a Windows service that is built using DLL files generated by MATLAB
Compiler, do the following to ensure stable performance:

Create a file named java.opts.
2 Add the following line to the file:

-Xrs

3 Save the file to: MCRROOT\version\runtime\win32|win64, where MCRROOT is the
installation folder of the MATLAB runtime and version is the MATLAB runtime
version (for example, v74 for MATLAB Compiler 4.4 (R2006a)).

Cavution Failure to create the java.opts file using these steps may result in
unpredictable results such as premature termination of Windows services.

Reserving Memory for Deployed Applications with MATLAB Memory Shielding

Reserving Memory for Deployed Applications with MATLAB
Memory Shielding

In this section...
“What Is MATLAB Memory Shielding and When Should You Use It?” on page 11-39
“Requirements for Using MATLAB Memory Shielding” on page 11-40

“Invoking MATLAB Memory Shielding for Your Deployed Application” on page
11-40

What Is MATLAB Memory Shielding and When Should You Use Ii?

Occasionally you encounter problems ensuring that you have the memory needed to run
deployed applications. These problems often occur when:

* Your data set is large

* You are trying to compensate for the memory limitations inherent in a 32-bit
Windows system

* The computer available to you has limited resources
+ Network resources are restrictive

Use MATLAB Memory Shielding to ensure that you obtain the maximum amount of
contiguous memory to run your deployed application successfully.

MATLAB Memory Shielding provides the specified level of protection of the address
space used by MATLAB. When you use this feature, it reserves the largest contiguous
block of memory available for your application after startup.

Memory shielding works by ensuring that resources, such as DLLs, load into locations
that will not fragment the address space of the system. The feature provides the specified
amount of contiguous address space you specify, up to the maximum available on the
system.

For example, on a 32-bit Windows system, MATLAB defaults to memory shielding for
virtual addresses 0x50000000-0x70000000. At the point where your application runs,
the shield lowers, allowing allocation of that virtual address space.

Note: This topic describes how to invoke the shielding function for deployed applications,
not the MATLAB workspace. To learn more about invoking memory shielding for

11-39

11 Deployment Process

11-40

MATLAB workspaces, see the discussion of the start-up option matlab shieldOption
in the MATLAB Function Reference Guide.

Requirements for Using MATLAB Memory Shielding

Before using MATLAB Memory Shielding for your deployed applications, verify that you

meet the following requirements:

Your deployed application is failing because it cannot find the proper amount of
memory and not for another unrelated reason. As a best practice, let the operating
system attempt to satisfy runtime memory requests, if possible. See “What Is
MATLAB Memory Shielding and When Should You Use It?” on page 11-39 for
examples of cases where you can benefit by using MATLAB Memory Shielding

Your application runs on a Windows 32-bit system. While MATLAB Memory
Shielding runs on 64-bit Windows systems without failing, it has no effect on your
application.

You are running with a standalone application or Windows executable. MATLAB
Memory Shielding does not work with shared libraries, NET assemblies or Java
packages.

You have run the MATLAB Compiler Runtime Installer on your system to get the
MATLAB runtime. The memory shielding feature is installed with the MATLAB

runtime.

Invoking MATLAB Memory Shielding for Your Deployed Application

Invoke memory shielding by using either the command-line syntax or the GUI. Each
approach has appropriate uses based on your specific memory reservation needs.

Using the Command Line

Use the command line if you want to invoke memory shielding only with the various
shield level values (not specific address ranges).

The base command-line syntax is:

MemShieldStarter [-help] [-gui]

[-shield shield level]
fully-qualified_app_path
[user-defined_app_arguments]

Reserving Memory for Deployed Applications with MATLAB Memory Shielding

1 Run your application using the default level of memory shielding. Use the command.:

MemShieldStarter fully-qualified_app_path
[user-defined_app_arguments]

2 If your application runs successfully, try the next highest shield level to guarantee
more contiguous memory, if needed.

A higher level of protection does not always provide a larger size block and
can occasionally cause start-up problems. Therefore, start with a lower level of
protection and be conservative when raising the level of protection.

Use only memory shielding levels that guarantee a successful execution of your
application. See the table MemShieldStarter Options for more details on which
shield options to choose.

+ Contact your system administrator for further advice on successfully running
your application.

3 Ifyour application fails to start, disable memory shielding:

a To disable memory shielding after you have enabled it, run the following
command:

MemShieldStarter -shield none
fully-qualified_app_path
[user-defined_app_arguments]

b Contact your system administrator for further advice on successfully running
your application.

MemShieldStarter Options

Option Description

-help Invokes help for MemShieldStarter

-gui Starts the Windows graphical interface for
MemShieldStarter.exe. See “Using the GUI”
on page 11-42 for more details.

-shield shield level See “Shield Level Options” on page 11-42.

fully-qualified application_path The fully qualified path to your user application

user-defined application_arguments Arguments passed to your user application.
MemShieldStarter .exe only passes user
arguments. It does not alter them.

1141

11 Deployment Process

11-42

Shield Level Options

shield level options are as follows:

none — This value completely disables memory shielding. Use this value if your
application fails to start successfully with the default (-shield minimum) option.

minimum — The option defaults to this setting. Minimum shielding protects the range
0x50000000 to 0x70000000 during startup until just before processing matlabrc.
This value ensures at least approximately 500 MB of contiguous memory available up
to this point.

When experimenting with a shielding level. start with minimum. To use the
default, do not specify a shield option upon startup. If your application fails to
start successfully using minimum, use —shield none. If your application starts
successfully with the default value for shield Ievel, try using the —shield
medium option to guarantee more memory.

medium — This value protects the same range as minimum, 0x50000000 to
0x70000000, but protects the range until just after startup processes matlabrc. It
ensures that there is at least approximately 500 MB of contiguous memory up to this
point. If MATLAB fails to start successfully with the -shield medium option, use
the default option (-shield minimum). If MATLAB starts successfully with the -
shield medium option and you want to try to ensure an even larger contiguous block
after startup, try using the —shield maximum option.

maximum — This value protects the maximum range, which can be up to
approximately 1.5 GB, until just after startup processes matlabrc. The default
memory shielding range for maximum covers 0x10000000 to 0x78000000. If
MATLAB fails to start successfully with the -shield maximum option, use the -
shield medium option.

Note: The shielding range may vary in various locales. Contact your system
administrator for further details.

Using the GUI

Use the graphical interface to invoke memory shielding for specific address ranges as
well as with specific shield level values.

1

To start the GUI, run the following at the system command prompt:

MemShieldStarter -gui

Reserving Memory for Deployed Applications with MATLAB Memory Shielding

The Memory Shielding Starter dialog box opens:

-} Memory Shielding Starter

Memory shieing level R - |

Memory address range: | 0x50000000 — | 0x70000000

User application name: | J

User application options: |

Run

Enter the appropriate values as described in MemShieldStarter Options. Use the
default Memory shielding level minimum.

You can specify a specific address range in the Memory address range fields.
Specifying a range override the default 0X50000000 through 0x70000000 address
range values required for the shield level minimum, for example.

Click Run.

If your application runs successfully, try the next highest shield level to guarantee
more contiguous memory, if needed.

* A higher level of protection does not always provide a larger size block and
can occasionally cause startup problems. Therefore, start with a lower level of
protection and use only what is necessary to guarantee a successful execution of
your application.

+ See the table MemShieldStarter Options for more details on appropriate shield
options for various situations.

11-43

11-44

Distributing Code to an End User

12 Distributing Code to an End User

Share MATLAB Code Using the MATLAB Runtime

12-2

Distributing MATLAB Code Using the MATLAB Runtime

On target computers without MATLAB, install the MATLAB runtime, if it is not already
present on the deployment machine.

Install MATLAB Runtime

The MATLAB runtime is an execution engine made up of the same shared libraries
MATLAB uses to enable execution of MATLAB files on systems without an installed
version of MATLAB.

The “MATLAB runtime” is now available for downloading from the Web to simplify the
distribution of your applications created using the MATLAB Compiler. Download the
MATLAB runtime from the MATLAB runtime product page.

The MATLAB runtime installer does the following:

1 Installs the MATLAB runtime (if not already installed on the target machine)
2 Installs the component assembly in the folder from which the installer is run

3 Copies the MWArray assembly to the Global Assembly Cache (GAC), as part of
installing the MATLAB runtime

MATLAB Runtime Prerequisites
1 Since installing the MATLAB runtime requires write access to the system registry,

ensure you have administrator privileges to run the MATLAB Runtime Installer.

2 The version of the MATLAB runtime that runs your application on the target
computer must be compatible with the version of MATLAB Compiler that built the
deployed MATLAB code.

3 Do not install the MATLAB runtime in MATLAB installation directories.
4 The MATLAB runtime installer requires approximately 2 GB of disk space.

Add the MATLAB Runtime Installer to the Installer

This example shows how to include the MATLAB runtime in the generated installer,
using one of the compiler apps. The generated installer contains all files needed to run
the standalone application or shared library built with MATLAB Compiler and properly
lays they out on a target system.

http://www.mathworks.com/products/compiler/mcr

Share MATLAB Code Using the MATLAB Runtime

1 On the Packaging Options section of the compiler interface, select one or both of
the following options:

Runtime downloaded from web — This option builds an installer that invokes
the MATLAB runtime installer from the MathWorks Web site.

* Runtime included in package — The option includes the MATLAB runtime
installer into the generated installer.

2 Click Package.

3 Distribute the installer as needed.
Install the MATLAB Runtime
This example shows how to install the MATLAB runtime on a system.

If you are given an installer containing the compiled artifacts, then the MATLAB
runtime is installed along with the application or shared library. If you are given just
the raw binary files, download the MATLAB runtime installer from the Web and run the
installer.

Note: If you are running on a platform other than Windows, “set the system paths” on
the target machine. Setting the paths enables your application to find the MATLAB
runtime.

Windows paths are set automatically. On Linux and Mac, you can use the run script to
set paths. See “Using MATLAB Compiler on Mac or Linux” for detailed information on
performing all deployment tasks specifically with UNIX variants such as Linux and Mac.

12-3

12-4

Compiler Commands

This chapter describes mcc, which is the command that invokes MATLAB Compiler.

+ “Command Overview” on page 13-2
+ “Simplify Compilation Using Macros” on page 13-5
* “Invoke MATLAB Build Options” on page 13-7

+ “MATLAB Runtime Component Cache and Deployable Archive Embedding” on page
13-10

+ “Explicitly Including a File for Compilation Using the %#function Pragma” on page
13-12

+ “Use the mxArray API to Work with MATLAB Types” on page 13-14
+ “Script Files” on page 13-15
* “Compiler Tips” on page 13-17

13 Compiler Commands

Command Overview

13-2

In this section...

“Compiler Options” on page 13-2

“Combining Options” on page 13-2

“Conflicting Options on the Command Line” on page 13-3
“Using File Extensions” on page 13-3

“Interfacing MATLAB Code to C/C++ Code” on page 13-4

Compiler Options

mcc is the MATLAB command that invokes MATLAB Compiler. You can issue the mcc
command either from the MATLAB command prompt (MATLAB mode) or the DOS or
UNIX command line (standalone mode).

You may specify one or more MATLAB Compiler option flags to mcc. Most option
flags have a one-letter name. You can list options separately on the command line, for
example,

mcc -m -v myfun

Macros are MathWorks supplied MATLAB Compiler options that simplify the more
common compilation tasks. Instead of manually grouping several options together

to perform a particular type of compilation, you can use a simple macro option. You
can always use individual options to customize the compilation process to satisfy your
particular needs. For more information on macros, see “Simplify Compilation Using
Macros” on page 13-5.

Combining Options

You can group options that do not take arguments by preceding the list of option flags
with a single dash (-), for example:

mcc -mv myfun

Options that take arguments cannot be combined unless you place the option with its
arguments last in the list. For example, these formats are valid:

mcc -v -W main -T link:exe myfun % Options listed separately
mcc -vW main -T link:exe myfun % Options combined

Command Overview

This format is not valid:

mcc -Wv main -T link:exe myfun

In cases where you have more than one option that takes arguments, you can only
include one of those options in a combined list and that option must be last. You can
place multiple combined lists on the mcc command line.

If you include any C or C++ file names on the mcc command line, the files are passed
directly to mbui ld, along with any MATLAB Compiler generated C or C++ files.

Conflicting Options on the Command Line

If you use conflicting options, MATLAB Compiler resolves them from left to right, with
the rightmost option taking precedence. For example, using the equivalencies in “Macro
Options” on page 13-5,

mcc -m -W none test.m
is equivalent to:

mcc -W main -T link:exe -W none test.m

In this example, there are two conflicting -W options. After working from left to right,
MATLAB Compiler determines that the rightmost option takes precedence, namely, -W
none, and the product does not generate a wrapper.

Caution Macros and regular options may both affect the same settings and may therefore
override each other depending on their order in the command line.

Using File Extensions

The valid, recommended file extension for a file submitted to MATLAB Compiler is .m.
Always specify the complete file name, including the .m extension, when compiling with
mcc or you may encounter unpredictable results.

Note: P-files (.p) have precedence over MATLAB files, therefore if both P-files and
MATLAB files reside in a folder, and a file name is specified without an extension, the P-
file will be selected.

13-3

13 Compiler Commands

13-4

Interfacing MATLAB Code to C/C++ Code

To designate code to be compiled with C or C++, rewrite the C or C++ function as a MEX-
file and call it from your application.

You can control whether the MEX-file or a MATLAB stub gets called by using the
isdeployed function.

Code Proper Return Types From C and C++ Methods

To avoid potential problems, ensure all C methods you write (and reference from within
MATLAB code) return a bool return type indicating the status. C++ methods should
return nothing (void).

Simplify Compilation Using Macros

Simplify Compilation Using Macros

In this section...

“Macro Options” on page 13-5
“Working With Macro Options” on page 13-5

Macro Options

MATLAB Compiler, through its exhaustive set of options, gives you access to the tools
you need to do your job. If you want a simplified approach to compilation, you can use one
simple option, 1.e., macro, that allows you to quickly accomplish basic compilation tasks.
Macros let you group several options together to perform a particular type of compilation.

This table shows the relationship between the macro approach to accomplish a standard
compilation and the multioption alternative.

Macro Bundle File Creates Option Equivalence
Option
Function Wrapper
| Output
Stage
[|
-1 macro_option_I Library -W Tib -T link:lib
-m macro_option_m Standalone application -W main -T link:exe

Working With Macro Options

The -m option tells MATLAB Compiler to produce a standalone application. The —-m
macro 1s equivalent to the series of options

-W main -T link:exe

This table shows the options that compose the -m macro and the information that they
provide to MATLAB Compiler.

-m Macro

13-5

13 Compiler Commands

13-6

Option Function

-W main Produce a wrapper file suitable for a standalone application.
-T link:exe Create an executable link as the output.

Changing Macro Options

You can change the meaning of a macro option by editing the corresponding
macro_option bundle file in matlabroot\toolbox\compiler\bundles. For
example, to change the -m macro, edit the file macro_option_min the bundles folder.

Note This changes the meaning of -m for all users of this MATLAB installation.

Specifying Default Macro Options

As the MCCSTARTUP functionality has been replaced by bundle file technology, the
macro_default file that resides in toolbox\compiler\bundles can be used to
specify default options to the compiler.

For example, adding -mv to the macro_default file causes the command:

mcc foo.m
to execute as though it were:

mcc -mv foo.m
Similarly, adding -v to the macro_default file causes the command:

mcc -W "lib:libfoo™ -T link:lib foo.m
to behave as though the command were:

mcc -v -W "lib:libfoo"™ -T link:lib foo.m

Invoke MATLAB Build Options

Invoke MATLAB Build Options

In this section...
“Specifying Full Path Names to Build MATLAB Code” on page 13-7
“Using Bundle Files to Build MATLAB Code” on page 13-8

Specifying Full Path Names to Build MATLAB Code

If you specify a full path name to a MATLAB file on the mcc command line, MATLAB
Compiler

1 Breaks the full name into the corresponding path name and file names (<path> and
<File>).

2 Replaces the full path name in the argument list with “-1 <path> <file>".
Specifying Full Paths Names

For example:

mcc -m /home/user/myfile.m

would be treated as

mcc -m -1 /home/user myfile.m

In rare situations, this behavior can lead to a potential source of confusion. For example,
suppose you have two different MATLAB files that are both named myfile.m and they
reside in /home/user/dirl and /home/user/dir2. The command

mcc -m -1 /home/user/dirl /home/user/dir2/myfile.m
would be equivalent to

mcc -m -1 /home/user/dirl -1 /home/user/dir2 myfile.m

MATLAB Compiler finds the myFfile.min dirl and compiles it instead of the one in
dir2 because of the behavior of the — 1 option. If you are concerned that this might be
happening, you can specify the —v option and then see which MATLAB file MATLAB
Compiler parses. The —v option prints the full path name to the MATLAB file during the
dependency analysis phase.

13-7

13 Compiler Commands

13-8

Note MATLAB Compiler produces a warning (specified_file_mismatch) if a file
with a full path name is included on the command line and MATLAB Compiler finds it
somewhere else.

Using Bundle Files to Build MATLAB Code

Bundle files provide a convenient way to group sets of MATLAB Compiler options and
recall them as needed. The syntax of the bundle file option is:

-B <filename>[:<al>,<a2>,...,<an>]

When used on the mcc command line, the bundle option -B replaces the entire string
with the contents of the specified file. The file should contain only mcc command-line
options and corresponding arguments and/or other file names. The file may contain other
-B options.

A bundle file can include replacement parameters for MATLAB Compiler options that
accept names and version numbers. For example, there is a bundle file for C shared
libraries, csharedl ib, that consists of:

-W lib:%1% -T link:lib

To invoke MATLAB Compiler to produce a C shared library using this bundle, you can
use:

mcc -B csharedlib:mysharedlib myfile.m myfile2.m

In general, each %n% in the bundle file will be replaced with the corresponding option
specified to the bundle file. Use %% to include a % character. It is an error to pass too
many or too few options to the bundle file.

Note You can use the -B option with a replacement expression as is at the DOS or UNIX
prompt. To use -B with a replacement expression at the MATLAB prompt, you must
enclose the expression that follows the -B in single quotes when there is more than one
parameter passed. For example,

>>mcc -B csharedlib:libtimefun weekday data tic calendar toc

can be used as is at the MATLAB prompt because 1ibtimefun is the only parameter
being passed. If the example had two or more parameters, then the quotes would be
necessary as in

Invoke MATLAB Build Options

>>mcc -B "cexcel:component,class,1.0" ...
weekday data tic calendar toc

Bundle Files Available with MATLAB Compiler

See the following table for a list of bundle files available with MATLAB Compiler.

Bundle File Creates Contents

cpplib C++ Library -W cpplib:<shared_library_name> -T link:lib

csharedlib C Shared Library |-W lib:<shared library name> -T link:lib

Note: Additional bundle files are available when you have a license for products layered
on MATLAB Compiler. For example, if you have a license for MATLAB Builder NE , you
can use the mcc command with bundle files that create COM objects and .NET objects.

13-9

13 Compiler Commands

MATLAB Runtime Component Cache and Deployable Archive
Embedding

In this section...

“Overriding Default Behavior” on page 13-11

“For More Information” on page 13-11

Deployable archive data is automatically embedded directly in the C/C++, main and
Winmain, shared libraries and standalones by default. It is also extracted by default to a
temporary folder.

Automatic embedding enables usage of MATLAB Runtime component cache features
through environment variables.

These variables allow you to specify the following:

* Define the default location where you want the deployable archive to be automatically
extracted

+ Add diagnostic error printing options that can be used when automatically extracting
the deployable archive, for troubleshooting purposes

Tuning the MATLAB runtime component cache size for performance reasons.

Use the following environment variables to change these settings.

Environment Variable Purpose Notes

MCR_CACHE_ROOT When set to the location of Does not apply
where you want the deployable
archive to be extracted, this
variable overrides the default
per-user component cache
location.

MCR_CACHE_VERBOSE When set to any value, this Logging details are turned off by
variable prints logging details |default (for example, when this
about the component cache for |variable has no value).
diagnostic reasons. This can
be very helpful if problems are
encountered during deployable
archive extraction.

13-10

MATLAB Runtime Component Cache and Deployable Archive Embedding

Environment Variable Purpose Notes

MCR_CACHE_SIZE When set, this variable The initial limit for this variable
overrides the default is 32M (megabytes). This
component cache size. may, however, be changed

after you have set the variable
the first time. Edit the file
-max_size, which resides in the
file designated by running the
mcrcachedir command, with
the desired cache size limit.

You can override this automatic embedding and extraction behavior by compiling with
the -C option. See “Overriding Default Behavior” on page 13-11 for more information.

Caution If you run mcc specifying conflicting wrapper and target types, the deployable
archive will not be embedded into the compiled MATLAB code. For example, if you run:

mcc -W lib:myLib -T link:exe test.m test.c
the generated test.exe will not have the deployable archive embedded in it, as if you
had specified a —C option to the command line.

Overriding Default Behavior

To extract the deployable archive in a manner prior to R2008a, alongside the compiled
shared library or executable, compile using the option .

You can also implement this override by checking the appropriate Option in the
Deployment Tool.

You might want to use this option to troubleshoot problems with the deployable archive,
for example, as the log and diagnostic messages are much more visible.

For More Information

For more information about the deployable archive, see “Deployable Archive” on page 7-6.

13-11

13 Compiler Commands

Explicitly Including a File for Compilation Using the %#function
Pragma

In this section...

“Using feval” on page 13-12

“Using %#function” on page 13-12

Using feval

In standalone mode, the pragma
%#Function <function_name-list>

informs MATLAB Compiler that the specified function(s) should be included in the
compilation, whether or not the MATLAB Compiler dependency analysis detects it.
Without this pragma, the MATLAB Compiler dependency analysis will not be able to
locate and compile all MATLAB files used in your application. This pragma adds the top-
level function as well as all the local functions in the file to the compilation.

You cannot use the %#function pragma to refer to functions that are not available in
MATLAB code.

Using %#function

A good coding technique involves using %#function in your code wherever you use
feval statements. This example shows how to use this technique to help MATLAB
Compiler find the appropriate files during compile time, eliminating the need to include
all the files on the command line.

function ret = mywindow(data,filterName)
%MYWINDOW Applies the window specified on the data.
%

% Get the length of the data.
N= length(data);

% List all the possible windows.

% Note the list of functions in the following function pragma is
% on a single line of code.

13-12

Explicitly Including a File for Compilation Using the %#function Pragma

W#function bartlett, barthannwin, blackman, blackmanharris,
bohmanwin, chebwin, Fflattopwin, gausswin, hamming, hann, kaiser,
nuttallwin, parzenwin, rectwin, tukeywin, triang

window = feval(filterName,N);

% Apply the window to the data.
ret = data.*window;

13-13

13 Compiler Commands

Use the mxArray API to Work with MATLAB Types

For full documentation on the mxArray API, see the MATLAB C and Fortran API
Reference documentation.

For a complete description of data types used with mxArray, see MATLAB External
Interfaces documentation.

For general information on data handling, see MATLAB External Interfaces
documentation.

13-14

Script Files

Script Files

In this section...
“Converting Script MATLAB Files to Function MATLAB Files” on page 13-15
“Including Script Files in Deployed Applications” on page 13-16

Converting Script MATLAB Files to Function MATLAB Files

MATLAB provides two ways to package sequences of MATLAB commands:

* Function MATLAB files
* Script MATLAB files

Some things to remember about script and function MATLAB files:

* Variables used inside function MATLAB files are local to that function; you cannot
access these variables from the MATLAB interpreter's workspace unless they are
passed back by the function. By contrast, variables used inside script MATLAB
files are shared with the caller's workspace; you can access these variables from the
MATLAB interpreter command line.

+ Variables that are declared as persistent in a MEX-file may not retain their values
through multiple calls from MATLAB.

MATLAB Compiler can compile script MATLAB files or can compile function MATLAB
files that call scripts. You can either specify an script MATLAB file explicitly on the mcc
command line, or you can specify function MATLAB files that include scripts.

Converting a script into a function is usually fairly simple. To convert a script to a
function, simply add a function line at the top of the MATLAB file.

Running this script MATLAB file from a MATLAB session creates variables m and t in
your MATLAB workspace browser.

If desired, convert this script MATLAB file into a function MATLAB file by simply
adding a function header line.

function houdini(sz)

m = magic(sz); % Assign magic square to m.
t=m."N 3; % Cube each element of m.

13-15

13 Compiler Commands

13-16

disp(t) % Display the value of t.

MATLAB Compiler can now compile houdini.m. However, because this makes houdini
a function, running the function no longer creates variables m and t in the MATLAB
workspace browser. If it is important to have m and t accessible from the MATLAB
workspace browser, you can change the beginning of the function to

function [m,t] = houdini(sz)

The function now returns the values of m and t to its caller.

Including Script Files in Deployed Applications

Compiled applications consist of two layers of MATLAB files. The top layer is the
interface layer and consists of those functions that are directly accessible from C or C++.

In standalone applications, the interface layer consists of only the main MATLAB file. In
libraries, the interface layer consists of the MATLAB files specified on the mcc command
line.

The second layer of MATLAB files in compiled applications includes those MATLAB files
that are called by the functions in the top layer. You can include scripts in the second
layer, but not in the top layer.

For example, you can produce an application from the houdini.m script MATLAB file by
writing a new MATLAB function that calls the script, rather than converting the script
into a function.

function houdini_fcn
houdini;

To produce the houdini_fcn, which will call the houdini.m script MATLAB file, use

mcc -m houdini_fcn

Compiler Tips

Compiler Tips

In this section...

“Calling a Function from the Command Line” on page 13-17

“Using winopen in a Deployed Application” on page 13-18

“Using MAT-Files in Deployed Applications” on page 13-18

“Compiling a GUI That Contains an ActiveX Control” on page 13-18
“Debugging MATLAB Compiler Generated Executables” on page 13-18
“Deploying Applications That Call the Java Native Libraries” on page 13-19
“Locating .fig Files in Deployed Applications” on page 13-19

“Terminating Figures by Force In a Standalone Application” on page 13-19
“Passing Arguments to and from a Standalone Application” on page 13-20
“Using Graphical Applications in Shared Library Targets” on page 13-21
“Using the VER Function in a Compiled MATLAB Application” on page 13-21

Calling a Function from the Command Line

You can make a MATLAB function into a standalone that is directly callable from the
system command line. All the arguments passed to the MATLAB function from the
system command line are strings. Two techniques to work with these functions are:

* Modify the original MATLAB function to test each argument and convert the strings
to numbers.

* Write a wrapper MATLAB function that does this test and then calls the original
MATLAB function.

For example:

function x=foo(a, b)
if (ischar(a)), a
if (ischar(b)), b

str2num(a), end;
str2num(b), end;

% The rest of your MATLAB code here...

You only do this if your function expects numeric input. If your function expects
strings, there is nothing to do because that's the default from the command line.

13-17

13 Compiler Commands

13-18

Using winopen in a Deployed Application

winhopen is a function that depends closely on a computer’s underlying file system. You
need to specify a path to the file you want to open, either absolute or relative.

When using winopen in deployed mode:

1 Verify that the file being passed to the command exists on the MATLAB path.
2 Use the which command to return an absolute path to the file.
3 Pass the path to winopen.

Using MAT-Files in Deployed Applications

To use a MAT-file in a deployed application, use the MATLAB Compiler -a option to
include the file in the deployable archive. For more information on the -a option, see .

Compiling a GUI That Contains an ActiveX Control

When you save a GUI that contains ActiveX components, GUIDE creates a file in
the current folder for each such component. The file name consists of the name of the
GUI followed by an underscore () and activexn, where n is a sequence number.
For example, if the GUI is named ActiveXcontrol then the file name would be
ActiveXcontrol _activexl. The file name does not have an extension.

If you use MATLAB Compiler mcc command to compile a GUIDE-created GUI that
contains an ActiveX component, you must use the —a option to add the ActiveX control
files that GUIDE saved in the current folder to the deployable archive. Your command
should be similar to

mcc -m mygui -a mygui_activexl

where mygui_activexl is the name of the file. If you have more than one such file, use
a separate —a option for each file.

Debugging MATLAB Compiler Generated Executables

As of MATLAB Compiler 4, it is no longer possible to debug your entire program using a
C/C++ debugger; most of the application is MATLAB code, which can only be debugged
in MATLAB. Instead, run your code in MATLAB and verify that it produces the desired
results. Then you can compile it. The compiled code will produce the same results.

Compiler Tips

Deploying Applications That Call the Java Native Libraries

If your application interacts with Java, you need to specify the search path for native
method libraries by editing librarypath.txt and deploying it.

1 Copy librarypath._txt from matlabroot/toolbox/local/librarypath.txt.
2 Place librarypath.txt in <mcr_root>/<ver>/toolbox/local.

<mcr_root> refers to the complete path where the MATLAB runtime library
archive files are installed on your machine.

3 Edit librarypath.txt by adding the folder that contains the native library that
your application's Java code needs to load.

Locating .fig Files in Deployed Applications

MATLAB Compiler locates . Fig files automatically when there is a MATLAB file with
the same name as the . fig file in the same folder. If the . Fig file does not follow this
rule, it must be added with the -a option.

Terminating Figures by Force In a Standalone Application

The purpose of mclWaitForFiguresToDie is to block execution of a calling
program as long as figures created in encapsulated MATLAB code are displayed.
mclWaitForFiguresToDie takes no arguments. Your application can call
mclWaitForFiguresToDie any time during execution. Typically you use
mclWaitForFiguresToDie when:

* There are one or more figures you want to remain open.
* The function that displays the graphics requires user input before continuing.

* The function that calls the figures was called from main() in a console program.

When mclWaitForFiguresToDie is called, execution of the calling program is blocked
if any figures created by the calling object remain open.

Both MATLAB Builder NE and MATLAB Builder JA use mcIWaitForFiguresToDie
through the use of wrapper methods. See “Blocking Execution of a Console Application
That Creates Figures” in the MATLAB Builder NE User's Guide and “Blocking Execution
of a Console Application that Creates Figures” in the MATLAB Builder JA User's Guide
for more details and code fragment examples.

13-19

13 Compiler Commands

Cavution Use caution when calling the mcIWaitForFiguresToDie function. Calling this
function from an interactive program like Excel can hang the application. This function
should be called only from console-based programs.

Passing Arguments to and from a Standalone Application

To pass input arguments to a MATLAB Compiler generated standalone application, you
pass them just as you would to any console-based application. For example, to pass a file
called helpfile to the compiled function called filename, use

filename helpfile

To pass numbers or letters (e.g., 1, 2, and 3), use

filename 1 2 3
Do not separate the arguments with commas.

To pass matrices as input, use

filename "[1 2 3]" "[4 5 6]"

You have to use the double quotes around the input arguments if there is a space in
it. The calling syntax is similar to the dos command. For more information, see the
MATLAB dos command.

The things you should keep in mind for your MATLAB file before you compile are:

* The input arguments you pass to your application from a system prompt are
considered as string input. If, in your MATLAB code before compilation, you are
expecting the data in different format, say double, you will need to convert the string
input to the required format. For example, you can use str2num to convert the string
input to numerical data. You can determine at run time whether or not to do this
by using the isdeployed function. If your MATLAB file expects numeric inputs in
MATLAB, the code can check whether it is being run as a standalone application. For
example:

function myfun (nl1, n2)
if (isdeployed)

nl = str2num(nl);

n2 = str2num(n2);
end

13-20

Compiler Tips

* You cannot return back values from your standalone application to the user. The only
way to return values from compiled code is to either display it on the screen or store it
in a file. To display your data on the screen, you either need to unsuppress (do not use
semicolons) the commands whose results yield data you want to return to the screen
or, use the disp command to display the value. You can then redirect these outputs
to other applications using output redirection (> operator) or pipes (only on UNIX
systems).

Passing Arguments to a Double-Clickable Application

On Windows, if you want to run the standalone application by double-clicking it, you
can create a batch file that calls this standalone application with the specified input
arguments. Here is an example of the batch file:

rem main_bat file that calls sub.exe with input parameters
sub "[1 2 3]" "[4 5 6]1"

@echo off

pause

The last two lines of code keep your output on the screen until you press a key. If you
save this file as main.bat, you can run your code with the specified arguments by
double-clicking the main.bat icon.

Using Graphical Applications in Shared Library Targets

When deploying a GUI as a shared library to a C/C++ application, use
mcIWaitForFiguresToDie to display the GUI until it is explicitly terminated.

Using the VER Function in a Compiled MATLAB Application

When you use the VER function in a compiled MATLAB application, it will perform
with the same functionality as if you had called it from MATLAB. However, be aware
that when using VER in a compiled MATLAB application, only version information for
toolboxes which the compiled application uses will be displayed.

13-21

13-22

Standalone Applications

This chapter describes how to use MATLAB Compiler to code and build standalone
applications. You can distribute standalone applications to users who do not have
MATLAB software on their systems.

“Introduction” on page 14-2

“Deploying Standalone Applications” on page 14-3

14 standalone Applications

Introduction

14-2

Suppose you want to create an application that calculates the rank of a large magic
square. One way to create this application is to code the whole application in C or C++;
however, this would require writing your own magic square, rank, and singular value
routines. An easier way to create this application is to write it as one or more MATLAB
files, taking advantage of the power of MATLAB and its tools.

You can create MATLAB applications that take advantage of the mathematical functions
of MATLAB, yet do not require that end users own MATLAB. Standalone applications
are a convenient way to package the power of MATLAB and to distribute a customized
application to your users.

The source code for standalone applications consists either entirely of MATLAB files or
some combination of MATLAB files and MEX-files.

MATLAB Compiler takes your MATLAB files and generates a standalone executable
that allows your MATLAB application to be invoked from outside of interactive
MATLAB.

You can call MEX-files from MATLAB Compiler generated standalone applications. The
MEX-files will then be loaded and called by the standalone code.

Deploying Standalone Applications

Deploying Standalone Applications

In this section...

“Compiling the Application” on page 14-3
“Testing the Application” on page 14-3
“Deploying the Application” on page 14-4
“Running the Application” on page 14-6

Compiling the Application

This example takes a MATLAB file, magicsquare.m, and creates a standalone
application, magicsquare.

1 Copy the file magicsquare.m from
matlabroot\extern\examples\compiler

to your work folder.
2 To compile the MATLAB code, use

mcc -mv magicsquare.m

The -m option tells MATLAB Compiler (mcc) to generate a standalone application.
The -v option (verbose) displays the compilation steps throughout the process and
helps identify other useful information such as which third-party compiler is used
and what environment variables are referenced.

This command creates the standalone application called magicsquare and
additional files. The Windows platform appends the .exe extension to the name. See
the table in “Standalone Executable” on page 8-2 for the complete list of files created.

Testing the Application

These steps test your standalone application on your development machine.

Note Testing your application on your development machine is an important step to
help ensure that your application is compilable. To verify that your application compiled

14-3

14 standalone Applications

14-4

properly, you must test all functionality that is available with the application. If you
receive an error message similar to Undefined function or Attempt to execute
script script_name as a function, it is likely that the application will not run
properly on deployment machines. Most likely, your deployable archive is missing some
necessary functions. Use -a to add the missing functions to the archive and recompile
your code.

1 Update your path as described in “MATLAB Runtime Path Settings for Run-time
Deployment” on page 18-4

2 Run the standalone application from the system prompt (shell prompt on UNIX or
DOS prompt on Windows) by typing the application name.

magicsquare.exe 4 (On Windows)
magicsquare 4 (On UNIX)
magicsquare.app/Contents/MacOS/magicsquare (On Maci64)

The results are:

ans =
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

Deploying the Application

You can distribute a MATLAB Compiler generated standalone application to any target
machine that has the same operating system as the machine on which the application
was compiled.

For example, if you want to deploy an application to a Windows machine, you must

use MATLAB Compiler to build the application on a Windows machine. If you want to
deploy the same application to a UNIX machine, you must use MATLAB Compiler on the
same UNIX platform and completely rebuild the application. To deploy an application to
multiple platforms requires MATLAB and MATLAB Compiler licenses on all the desired
platforms.

Windows

Gather and package the following files and distribute them to the deployment machine.

Deploying Standalone Applications

Component

Description

MATLAB Runtime Installer | Self-extracting MATLAB runtime library utility; platform-

dependent file that must correspond to the end user's
platform. Run the mcrinstaller command to obtain
name of executable.

magicsquare

Application; magicsquare.exe for Windows

UNIX

Distribute and package your standalone application on UNIX by packaging the following
files and distributing them to the deployment machine.

Component Description

MATLAB Runtime MATLAB runtime library archive; platform-dependent file

Installer that must correspond to the end user's platform. Run the
mcrinstaller command to obtain name of the binary.

magicsquare Application

Macié4

Distribute and package your standalone application on 64-bit Macintosh by copying,
tarring, or zipping as described in the following table.

Component Description

MATLAB Runtime MATLAB runtime library archive; platform-dependent file

Installer that must correspond to the end user's platform. Run the
mcrinstaller command to obtain name of the binary.

magicsquare Application

magicsquare . app Application bundle

Assuming Foo is a folder within your current folder:
+ Distribute by copying:

cp -R myapp.app foo
+ Distribute by tarring:

tar -cvf myapp.tar myapp-app
cd foo

14-5

14 standalone Applications

14-6

Component Description

tar -xvf../ myapp.tar
+ Distribute by zipping:
zip -ry myapp myapp.app

cd foo
unzip -.\myapp-.zip

Running the Application

These steps describe the process that end users must follow to install and run the
application on their machines.

Preparing Your Machines

Install the MATLAB runtime by running the mcrinstal ler command to obtain name
of the executable or binary. For more information on running the MATLAB Runtime
Installer utility and modifying your system paths, see “Distributing MATLAB Code
Using the MATLAB Runtime” on page 12-2.

Executing the Application

Run the magicsquare standalone application from the system prompt and provide a
number representing the size of the desired magic square, for example, 4.

magicsquare 4

The results are displayed as:

ans =
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

Note Input arguments you pass to and from a system prompt are treated as string input
and you need to consider that in your application. For more information, see “Passing
Arguments to and from a Standalone Application” on page 13-20.

Note: Before executing your MATLAB Compiler generated executable, set the
LD_PRELOAD environment variable to \Fib\libgcc s.so.1l.

Deploying Standalone Applications

Executing the Application on 64-Bit Macintosh (Maci64)
For 64-bit Macintosh, you run the application through the bundle:

magicsquare.app/Contents/Mac0OS/magicsquare

14-7

14-8

Libraries

This chapter describes how to use MATLAB Compiler to create libraries.

+ “Addressing mwArrays Above the 2 GB Limit” on page 15-2

+ “Calling a Shared Library” on page 15-3

+ “Integrate C Shared Libraries” on page 15-8

* “Integrate C++ Shared Libraries” on page 15-12

+ “How the mcImcrrt Proxy Layer Handles Loading of Libraries” on page 15-16

+ “Call MATLAB Compiler API Functions (mcl*) from C/C++ Code” on page 15-18
+ “About Memory Management and Cleanup” on page 15-28

15

Libraries

Addressing mwArrays Above the 2 GB Limit

15-2

In R2007b, you had to define MX_COMPAT_32_OFF in the mbui Id step to address
MWArrays above the 2 GB limit on 64-bit architectures. If you did not define
MX_COMPAT_32_OFF, the compile time variable MX_COMPAT_32 was defined for you,
limiting you to using smaller arrays on all architectures.

In R2008a, the default definition of MX_COMPAT 32 was removed, and large array
support is now the default for both C and C++ code. This default may, in some cases,
cause compiler warnings and errors. You can define MX_COMPAT_32 in your mbui ld step
to return to the previously default behavior.

Code compiled with MX_COMPAT _32 is not 64-bit aware. In addition, MX_COMPAT 32
controls the behavior of some type definitions. For instance, when MX_COMPAT_32 is
defined, mwSize and mwlndex are defined to ints. When MX_COMPAT_32 is not defined,
mwSize and mwlndex are defined to size_t. This can lead to compiler warnings and
errors with respect to signed and unsigned mismatches.

In R2008b, all support for MX_COMPAT_32 was removed.

See Appendix C, for detailed changes to mwArray classes and method signatures.

Calling a Shared Library

Calling a Shared Library

In this section...

“Initializing and Terminating Your Application with mclInitializeApplication and
mclTerminateApplication” on page 15-3

“Using a Shared Library” on page 15-6
“Restrictions When using MATLAB Function loadlibrary” on page 15-7

At runtime, there is a MATLAB runtime instance associated with each individual shared
library. Consequently, if an application links against two MATLAB Compiler generated
shared libraries, there will be two MATLAB runtime instances created at runtime.

You can control the behavior of each MATLAB runtime instance by using MATLAB
runtime options. The two classes of MATLAB runtime options are global and local.
Global MATLAB runtime options are identical for each MATLAB runtime instance in an
application. Local MATLAB runtime options may differ for MATLAB runtime instances.

To use a shared library, you must use these functions:

+ mclInitializeApplication
+ mclTerminateApplication

Initializing and Terminating Your Application with mclinitializeApplication
and mclTerminateApplication

mclInitializeApplication allows you to set the global MATLAB runtime options.
They apply equally to all MATLAB runtime instances. You must set these options before
initializing your first MATLAB shared library.

These functions are necessary because some MATLAB runtime options such as whether
or not to start Java, whether or not to use the MATLAB JIT feature, and so on, are set
when the first MATLAB runtime instance starts and cannot be changed by subsequent
instances of the MATLAB runtime.

Cavution You must call mclInitializeApplication once at the beginning of your
driver application. You must make this call before calling any other MATLAB functions.
This also applies to shared libraries. Avoid calling mclInitializeApplication
multiple times in an application as it will cause the application to hang.

15-3

] 5 Libraries

After you call mclTerminateApplication, you may not call
mclInitializeApplication again. No MATLAB functions may be called after
mclTerminateApplication.

Avoid issuing cd commands from the driver application prior to calling
mclInitializeApplication. Failure to do so can cause a failure in MATLAB runtime
initialization.

The function signatures are

bool mcllInitializeApplication(const char **options, int count);
bool mclTerminateApplication(void);

mclnitializeApplication

Takes an array of strings (options) that you set (the same options that can be provided
to mcc via the -R option) and a count of the number of options (the length of the option
array). Returns true for success and false for failure.

mclTerminateApplication

Takes no arguments and can only be called after all MATLAB runtime instances have
been destroyed. Returns true for success and false for failure.

The following code example is from matrixdriver.c:

int mainQ{

mxArray *inl, *in2; /* Define input parameters */
mxArray *out = NULL;/* and output parameters to pass to
the library functions */

double data[] = {1,2,3,4,5,6,7,8,9};

/* Call library initialization routine and make sure that
the library was initialized properly */
mclInitializeApplication(NULL,0);
if (Mlibmatrixlnitialize()){
fprintf(stderr,"could not initialize the library
properly\n');
return -1;

}

/* Create the input data */

15-4

Calling a Shared Library

inl = mxCreateDoubleMatrix(3,3,mxREAL);
in2 = mxCreateDoubleMatrix(3,3,mxREAL);
memcpy(mxGetPr(inl), data, 9*sizeof(double));
memcpy(mxGetPr(in2), data, 9*sizeof(double));

/* Call the library function */

mlfAddmatrix(1, &out, inl, in2);

/* Display the return value of the library function */

printf("The value of added matrix is:\n"");

display(out);

/* Destroy return value since this variable will be reused
in next function call. Since we are going to reuse the
variable, we have to set it to NULL. Refer to MATLAB
Compiler documentation for more information on this. */

mxDestroyArray(out); out=0;

mifMultiplymatrix(l, &out, inl, in2);

printf("The value of the multiplied matrix is:\n");

display(out);

mxDestroyArray(out); out=0;

mifEigmatrix(1l, &out, inl);

printf("The Eigen value of the first matrix is:\n");

display(out);

mxDestroyArray(out); out=0;

/* Call the library termination routine */
libmatrixTerminate();

/* Free the memory created */
mxDestroyArray(inl); inl=0;
mxDestroyArray(in2); in2 = 0;
mclTerminateApplication();
return O;

Caution mclInitializeApplication can only be called once per application. Calling
it a second time generates an error, and will cause the function to return false. This
function must be called before calling any C MEX function or MAT-file API function.

15-5

] 5 Libraries

Using a Shared Library

To use a MATLAB Compiler generated shared library in your application, you must
perform the following steps:

1 Include the generated header file for each library in your application. Each MATLAB
Compiler generated shared library has an associated header file named 1ibname .h,
where 1ibname is the library's name that was passed in on the command line when
the library was compiled.

2 Initialize the MATLAB runtime proxy layer by calling mcImcrinitialize().
Use mclIRunMain() to call the function where your MATLAB functions are used.

mclRunMain() provides a convenient cross platform mechanism for wrapping the
execution of MATLAB code.

Cavution Do not use mclRunMain() if your application brings up its own full
graphical environment.

4 Initialize the MATLAB runtime by calling mclInitializeApplication() API
function.

You must call this function once per application, and it must be called before
calling any other MATLAB API functions, such as C-MEX functions or C MAT-
file functions. mclInitializeApplication() must be called before calling any
functions in a MATLAB Compiler generated shared library. You may optionally
pass in application-level options to this function. mcl InitializeApplication()
returns a Boolean status code. A return value of true indicates successful
initialization, and false indicates failure.

5 For each MATLAB Compiler generated shared library that you include in your
application, call the library's initialization function.

This function performs several library-local initializations, such as unpacking the
deployable archive, and starting an MATLAB runtime instance with the necessary
information to execute the code in that archive. The library initialization function
will be named 1ibnamelnitialize(), where 1ibname is the library's name

that was passed in on the command line when the library was compiled. This
function returns a Boolean status code. A return value of true indicates successful
initialization, and False indicates failure.

15-6

Calling a Shared Library

Note On Windows, if you want to have your shared library call a MATLAB

shared library (as generated by MATLAB Compiler), the MATLAB library
initialization function (e.g., <libname>Initialize, <libname>Terminate,
mclInitialize, mclTerminate) cannot be called from your shared library during
the DI IMain(DLL_ATTACH_PROCESS) call. This applies whether the intermediate
shared library is implicitly or explicitly loaded. You must place the call somewhere
after DI IMain().

6 Call the exported functions of each library as needed.

Use the C MEX API to process input and output arguments for these functions.

7 When your application no longer needs a given library, call the library's termination
function.

This function frees the resources associated with its MATLAB runtime instance.
The library termination function will be named <l ibname>Terminate(), where
<libname> is the library's name that was passed in on the command line when the
library was compiled. Once a library has been terminated, that library's exported
functions should not be called again in the application.

8 When your application no longer needs to call any MATLAB Compiler generated
libraries, call the mclTerminateApplication API function.

This function frees application-level resources used by the MATLAB runtime. Once
you call this function, no further calls can be made to MATLAB Compiler generated
libraries in the application.

Restrictions When using MATLAB Function loadlibrary

You can not use the MATLAB function loadlibrary inside of MATLAB to load a C
shared library built with MATLAB Compiler.

For more information about using loadlibrary, see “Load MATLAB Libraries using
loadlibrary”.

15-7

15

Libraries

Integrate C Shared Libraries

15-8

In this section...

“C Shared Library Wrapper” on page 15-8
“C Shared Library Example” on page 15-8

C Shared Library Wrapper

The C library wrapper option allows you to create a shared library from a set of MATLAB
files. MATLAB Compiler generates a wrapper file, a header file, and an export list. The
header file contains all of the entry points for all of the compiled MATLAB functions. The
export list contains the set of symbols that are exported from a C shared library.

C Shared Library Example

This example takes several MATLAB files and creates a C shared library. It also includes
a standalone driver application to call the shared library.

Building the Shared Library

1

Copy the following files from matlabroot\extern\examples\compiler to your
work directory:

matlabroot\extern\examples\compiler\addmatrix.m
matlabroot\extern\examples\compiler\multiplymatrix.m
matlabroot\extern\examples\compiler\eigmatrix.m

To create the shared library, enter the following command on a single line:

mcc -B csharedlib:libmatrix addmatrix.m multiplymatrix.m
eigmatrix.m -v

The -B csharedlib option is a bundle option that expands into
-W lib:<libname> -T link:lib

The -W lib:<libname> option tells MATLAB Compiler to generate a function
wrapper for a shared library and call it libname. The -T link:lib option
specifies the target output as a shared library. Note the directory where the product
puts the shared library because you will need it later on.

Integrate C Shared Libraries

Tip You can also build the shared library using the Library Compiler App.

Writing a Driver Application for a Shared Library

Copy matlabroot\extern\examples\compiler\matrixdriver.c to your working
directory. This file contains the driver code for the application.

All programs that call MATLAB Compiler generated shared libraries have roughly the
same structure:

1 Initialize the MATLAB runtime using mcImcrinitialize().

2 Use mclRunMain() to call the code that uses the MATLAB generated shared
library.

3 Declare variables and process/validate input arguments.

4 CallmclInitializeApplication, and test for success. This function sets up the
global MATLAB runtime state and enables the construction of MATLAB runtime
instances.

Cavution Avoid issuing cd commands from the driver application prior to calling
mclInitializeApplication. Failure to do so can cause a failure in MATLAB
runtime initialization.

5 Call, once for each library, <libraryname>Initialize, to create the MATLAB
runtime instance required by the library.

6 Invoke functions in the library, and process the results. (This is the main body of the
program.)

Note If your driver application displays MATLAB figure windows, you should
include a call to mcIWaitForFiguresToDie(NULL) before calling the Terminate
functions and mclTerminateApplication in the following two steps.

7 Call, once for each library, <lib>Terminate, to destroy the associated MATLAB
runtime.

Caution <lib>Terminate will bring down enough of the MATLAB runtime address
space that the same library (or any other library) cannot be initialized. Issuing a
<lib>Initialize call after a <lib>Terminate call causes unpredictable results.
Instead, use the following structure:

15-9

15

Libraries

15-10

-.-code...
mclInitializeApplication();
liblinitialize(Q);
lib2Initialize();

liblTerminate();
lib2Terminate();
mclTerminateApplication();
-.-code. ..

8 CallmclTerminateApplication to free resources associated with the global
MATLAB runtime state.
9 Clean up variables, close files, etc., and exit.

Compiling the Driver Application

To compile the driver code, matrixdriver.c, you use your C/C++ compiler. Execute
the following mbui Id command that corresponds to your development platform. This
command uses your C/C++ compiler to compile the code.

mbuild matrixdriver.c libmatrix.lib (Windows)
mbuild matrixdriver.c -L. -Imatrix -1. (UNIX)

Note This command assumes that the shared library and the corresponding header file
created from are in the current working directory.

This generates a standalone application, matrixdriver._.exe, on Windows, and
matrixdriver, on UNIX.

Testing the Driver Application

These steps test your standalone driver application and shared library on your
development machine.

1 To run the application, add the directory containing the shared library that was
created in “Building the Shared Library” on page 15-8 to your dynamic library
path.

2 Update the path for your platform by following the instructions in “MATLAB
Runtime Path Settings for Development and Testing” on page 18-2.

3 Run the driver application from the prompt (DOS prompt on Windows, shell prompt
on UNIX) by typing the application name.

Integrate C Shared Libraries

matrixdriver.exe
matrixdriver

matrixdriver._app/Contents/MacOS/matrixdriver (On Mac)

The results are displayed as

The value of added matrix 1is:
2.00 8.00 14.00
4.00 10.00 16.00
6.00 12.00 18.00

The value of the multiplied matrix is:
30.00 66.00 102.00
36.00 81.00 126.00
42.00 96.00 150.00

The eigenvalues of the first matrix are:

16.12 -1.12 -0.00

(On Windows)

15-11

15

Libraries

Integrate C++ Shared Libraries

15-12

In this section...

“C++ Shared Library Wrapper” on page 15-12
“C++ Shared Library Example” on page 15-12

C++ Shared Library Wrapper

The C++ library wrapper option allows you to create a shared library from an arbitrary
set of MATLAB files. MATLAB Compiler generates a wrapper file and a header file. The
header file contains all of the entry points for all of the compiled MATLAB functions.

C++ Shared Library Example

This example rewrites the C shared library example using C++. The procedure for
creating a C++ shared library from MATLAB files is identical to the procedure for
creating a C shared library, except you use the cpplib wrapper. Enter the following
command on a single line:

mcc -W cpplib:libmatrixp -T link:lib addmatrix.m multiplymatrix.m eigmatrix.m -v
The -W cpplib:<libname> option tells MATLAB Compiler to generate a function
wrapper for a shared library and call it <l ibname>. The -T link: lib option specifies

the target output as a shared library. Note the directory where the product puts the
shared library because you will need it later.

Writing the Driver Application

Note Due to name mangling in C++, you must compile your driver application with
the same version of your third-party compiler that you use to compile your C++ shared
library.

In the C++ version of the matrixdriver application matrixdriver.cpp, arrays are
represented by objects of the class mwArray. Every mwArray class object contains a
pointer to a MATLAB array structure. For this reason, the attributes of an mwArray
object are a superset of the attributes of a MATLAB array. Every MATLAB array
contains information about the size and shape of the array (i.e., the number of rows,

Integrate C++ Shared Libraries

columns, and pages) and either one or two arrays of data. The first array stores the real
part of the array data and the second array stores the imaginary part. For arrays with
no imaginary part, the second array is not present. The data in the array is arranged in
column-major, rather than row-major, order.

Caution Avoid issuing cd commands from the driver application prior to calling
mclInitializeApplication. Failure to do so can cause a failure in MATLAB runtime
initialization.

For information about how the compiler uses a proxy layer for the libraries that
an application must link, see “How the mcImcrrt Proxy Layer Handles Loading of
Libraries” on page 15-16.

Compiling the Driver Application

To compile the matrixdriver.cpp driver code, you use your C++ compiler. By executing
the following mbui Id command that corresponds to your development platform, you will
use your C++ compiler to compile the code.

mbuild matrixdriver.cpp libmatrixp.lib (Windows)
mbuild matrixdriver.cpp -L. -Imatrixp -1. (UNIX)

Note This command assumes that the shared library and the corresponding header file
are in the current working directory.

On Windows, if this is not the case, specify the full path to Fibmatrixp.lib, and use a
-1 option to specify the directory containing the header file.

On UNIX, if this is not the case, replace the “.” (dot) following the —-L and -1 options
with the name of the directory that contains these files, respectively.

Incorporating a C++ Shared Library into an Application

To incorporate a C++ shared library into your application, you will, in general, follow the
steps in “Using a Shared Library” on page 15-6. There are two main differences to note
when using a C++ shared library:

+ Interface functions use the mwArray type to pass arguments, rather than the
mxArray type used with C shared libraries.

15-13

15

Libraries

15-14

+ C++ exceptions are used to report errors to the caller. Therefore, all calls must be
wrapped in a try-catch block.

Exported Function Signature

The C++ shared library target generates two sets of interfaces for each MATLAB
function. The first set of exported interfaces is identical to the mIx signatures that
are generated in C shared libraries. The second set of interfaces is the C++ function
interfaces. The generic signature of the exported C++ functions is as follows:

MATLAB Functions with No Return Values
bool MW_CALL_CONV <function-name>(<mwArray_ lists>);
MATLAB Functions with at Least One Return Value

bool MW_CALL_CONV <function-name>(int <number_of return_values>,
<mxArray_pointers>, <mwArray_lists>);

In this case, mMwArray 11ists represents a comma-separated list of type const
mwArrayé& and mxArray_pointers represents a comma-separated list of pointers
of type mwArray&. For example, in the Fibmatrix library, the C++ interfaces to the
addmatrix MATLAB function is generated as:

void addmatrix(int nargout, mwArray& a , const mwArray& al,
const mwArray& a2);

Error Handling

C++ interface functions handle errors during execution by throwing a C++ exception.
Use the mwException class for this purpose. Your application can catch mwExceptions
and query the what() method to get the error message. To correctly handle errors when
calling the C++ interface functions, wrap each call inside a try-catch block.

try
{

(call function)
}
catch (const mwException& e)

{

(handle error)

Integrate C++ Shared Libraries

,

The matrixdriver.cpp application illustrates the typical way to handle errors when
calling the C++ interface functions.

Working with C++ Shared Libraries and Sparse Arrays

The MATLAB Compiler API includes static factory methods for working with sparse
arrays.

For a complete list of the methods, see “C++ Utility Classes” on page C-4.

15-15

] 5 Libraries

How the mcImcrrt Proxy Layer Handles Loading of Libraries

All application and software components generated by MATLAB Compiler and the
associated builder products need to link against only one MATLAB library, mcImcrrt.
This library provides a proxy API for all the public functions in MATLAB libraries used
for matrix operations, MAT-file access, utility and memory management, and application
runtime. The mcImcrrt library lies between deployed MATLAB code and these other
version-dependent libraries, providing the following functionality:

* Ensures that multiple versions of the MATLAB runtime can coexist

* Provides a layer of indirection

+ Ensures applications are thread-safe

* Loads the dependent (re-exported) libraries dynamically

The relationship between mcImcrrt and other MATLAB libraries is shown in the

following figure.

Mamn Lih NET Excel
MO MIOBRRT

i T

! I

| I

i I

i I

i I

I |

¥] ¥

mak | mx | MATLAR
The MCLMCRRT Proxy Layer

In the figure, solid arrows designate static linking and dotted arrows designate dynamic
linking. The figure illustrates how the mcImcrrt library layer sits above the mcImcr and

15-16

How the mcImcrrt Proxy Layer Handles Loading of Libraries

mcr libraries. The mcImcr library contains the run-time functionality of the deployed
MATLAB code. The mcr module ensures each bundle of deployed MATLAB code runs
in its own context at runtime. The mcImcrrt proxy layer, in addition to loading the
mclImcr, also dynamically loads the MX and MAT modules, primarily for mxArray
manipulation. For more information, see the MathWorks Support database and search
for information on the MSVC shared library.

Caution Deployed applications must only link to the mcImcrrt proxy layer library
(mcImerrt.1ib on Windows, mcImcrrt.so on Linux, and mcImcrrt._.dylib on
Macintosh). Do not link to the other libraries shown in the figure, such as mcImcr,
1ibmx, and so on.

15-17

http://www.mathworks.com/support/solutions/

] 5 Libraries

Call MATLAB Compiler API Functions (mcl*) from C/C++ Code

15-18

In this section...

“Functions in the Shared Library” on page 15-18

“Type of Application” on page 15-18

“Structure of Programs That Call Shared Libraries” on page 15-19

“Library Initialization and Termination Functions” on page 15-20

“Print and Error Handling Functions” on page 15-21

“Functions Generated from MATLAB Files” on page 15-22

“Retrieving MATLAB Runtime State Information While Using Shared Libraries” on

page 15-27

Functions in the Shared Library

A shared library generated by MATLAB Compiler contains at least seven functions.
There are three generated functions to manage library initialization and termination,
one each for printed output and error messages, and two generated functions for each
MATLAB file compiled into the library.

To generate the functions described in this section, first copy sierpinski.m,
main_for_lib.c, main_for_lib.h, and triangle.c from matlabroot\extern\examples
\compi ler into your directory, and then execute the appropriate MATLAB Compiler
command.

Type of Application

For a C Application on Windows

mcc -W lib:libtriangle -T link:lib sierpinski.m
mbuild triangle.c main_for_lib.c libtriangle.lib

For a C Application on UNIX

mcc -W lib:libtriangle -T link:lib sierpinski.m
mbuild triangle.c main_for_lib.c -L. -Itriangle -1.

For a C++ Application on Windows

mcc -W cpplib:libtrianglep -T link:lib sierpinski.m
mbuild triangle.cpp main_for_lib.c libtrianglep.lib

Call MATLAB Compiler API Functions (mcl*) from C/C++ Code

For a C++ Application on UNIX

mcc -W cpplib:libtriangle -T link:lib sierpinski.m
mbuild triangle.cpp main_for_lib.c -L. -ltriangle -1.

These commands create a main program named triangle, and a shared library

named libtriangle. The library exports a single function that uses a simple iterative
algorithm (contained in sierpinski.m) to generate the fractal known as Sierpinski's
Triangle. The main program in triangle.c or triangle.cpp can optionally take a single
numeric argument, which, if present, specifies the number of points used to generate the
fractal. For example, triangle 8000 generates a diagram with 8,000 points.

08F
0.7k
0.6r
05k
0.4 F

0.3F

£
s D

P L)
__:f?'ivf..\'u 3 Y

At 4 S O
06 07 08

o

0.4

In this example, MATLAB Compiler places all of the generated functions into the
generated file libtriangle.c or libtriangle.cpp.

Structure of Programs That Call Shared Libraries

All programs that call MATLAB Compiler generated shared libraries have roughly the
same structure:

1 Declare variables and process/validate input arguments.

15-19

15

Libraries

15-20

2 CallmclInitializeApplication, and test for success. This function sets up the
global MATLAB runtime state and enables the construction of MATLAB runtime
instances.

3 Call, once for each library, <libraryname>Initialize, to create the MATLAB
runtime instance required by the library.

4 Invoke functions in the library, and process the results. (This is the main body of the
program.)

5 Call, once for each library, <libraryname>Terminate, to destroy the associated
MATLAB runtime.

6 CallmclTerminateApplication to free resources associated with the global
MATLAB runtime state.

7 Clean up variables, close files, etc., and exit.

To see these steps in an actual example, review the main program in this example,
triangle.c.

Library Initialization and Termination Functions

The library initialization and termination functions create and destroy, respectively,

the MATLAB runtime instance required by the shared library. You must call the
initialization function before you invoke any of the other functions in the shared library,
and you should call the termination function after you are finished making calls into the
shared library (or you risk leaking memory).

There are two forms of the initialization function and one type of termination function.
The simpler of the two initialization functions takes no arguments; most likely this is the
version your application will call. In this example, this form of the initialization function
is called libtrianglelnitialize.

bool libtrianglelnitialize(void)

This function creates an MATLAB runtime instance using the default print and error
handlers, and other information generated during the compilation process.

However, if you want more control over how printed output and error messages are
handled, you may call the second form of the function, which takes two arguments.

bool libtrianglelnitializeWithHandlers(
mclOutputHandlerFcn error_handler,
mclOutputHandlerFcn print_handler

Call MATLAB Compiler API Functions (mcl*) from C/C++ Code

By calling this function, you can provide your own versions of the print and error
handling routines called by the MATLAB runtime. Each of these routines has the same
signature (for complete details, see “Print and Error Handling Functions” on page
15-21). By overriding the defaults, you can control how output is displayed and, for
example, whether or not it goes into a log file.

Note Before calling either form of the library initialization routine, you must first call
mclInitializeApplication to set up the global MATLAB runtime state. See “Calling
a Shared Library” on page 15-3 for more information.

On Microsoft Windows platforms, MATLAB Compiler generates an additional
initialization function, the standard Microsoft DLL initialization function DI IMain.

BOOL WINAPI DIIMain(HINSTANCE hlnstance, DWORD dwReason,
void *pv)

The generated DI IMain performs a very important service; it locates the directory in
which the shared library is stored on disk. This information is used to find the deployable
archive, without which the application will not run. If you modify the generated DI IMain
(not recommended), make sure you preserve this part of its functionality.

Library termination is simple.

void libtriangleTerminate(void)

Call this function (once for each library) before calling mclTerminateApplication.

Print and Error Handling Functions

By default, MATLAB Compiler generated applications and shared libraries send printed
output to standard output and error messages to standard error. MATLAB Compiler
generates a default print handler and a default error handler that implement this policy.
If you'd like to change this behavior, you must write your own error and print handlers
and pass them in to the appropriate generated initialization function.

You may replace either, both, or neither of these two functions. The MATLAB runtime
sends all regular output through the print handler and all error output through the error
handler. Therefore, if you redefine either of these functions, the MATLAB runtime will
use your version of the function for all the output that falls into class for which it invokes
that handler.

15-21

15

Libraries

15-22

The default print handler takes the following form.

static int mclDefaultPrintHandler(const char *s)

The implementation is straightforward; it takes a string, prints it on standard output,
and returns the number of characters printed. If you override or replace this function,
your version must also take a string and return the number of characters “handled.”
The MATLAB runtime calls the print handler when an executing MATLAB file makes a
request for printed output, e.g., via the MATLAB function disp. The print handler does
not terminate the output with a carriage return or line feed.

The default error handler has the same form as the print handler.

static int mclDefaultErrorHandler(const char *s)

However, the default implementation of the print handler is slightly different. It sends
the output to the standard error output stream, but if the string does not end with
carriage return, the error handler adds one. If you replace the default error handler with
one of your own, you should perform this check as well, or some of the error messages
printed by the MATLAB runtime will not be properly formatted.

Caution The error handler, despite its name, does not handle the actual errors, but
rather the message produced after the errors have been caught and handled inside the
MATLAB runtime. You cannot use this function to modify the error handling behavior
of the MATLAB runtime -- use the try and catch statements in your MATLAB files if
you want to control how a MATLAB Compiler generated application responds to an error
condition.

Note: If you provide alternate C++ implementations of either
mclDefaultPrintHandler or mclDefaul tErrorHandler, then functions must be
declared extern "'C". For example:

extern "C" int myPrintHandler(const char *s);

Functions Generated from MATLAB Files

For each MATLARB file specified on the MATLAB Compiler command line, the product
generates two functions, the mIx function and the mI ¥ function. Each of these generated
functions performs the same action (calls your MATLAB file function). The two functions

Call MATLAB Compiler API Functions (mcl*) from C/C++ Code

have different names and present different interfaces. The name of each function is based
on the name of the first function in the MATLAB file (sierpinski, in this example);
each function begins with a different three-letter prefix.

Note: For C shared libraries, MATLAB Compiler generates the mIx and mlf functions
as described in this section. For C++ shared libraries, the product generates the mlx
function the same way it does for the C shared library. However, the product generates a
modified ml ¥ function with these differences:

* The mlf before the function name is dropped to keep compatibility with R13.

* The arguments to the function are mwArray instead of mxArray.

mlx Interface Function

The function that begins with the prefix mIx takes the same type and number of
arguments as a MATLAB MEX-function. (See the External Interfaces documentation

for more details on MEX-functions.) The first argument, nlhs, is the number of output
arguments, and the second argument, plhs, is a pointer to an array that the function
will fill with the requested number of return values. (The “Ihs” in these argument names
is short for “left-hand side” -- the output variables in a MATLAB expression are those on
the left-hand side of the assignment operator.) The third and fourth parameters are the
number of inputs and an array containing the input variables.

void mIxSierpinski(int nlhs, mxArray *plhs[], int nrhs,
mxArray *prhs[])

mlif Interface Function

The second of the generated functions begins with the prefix ml¥. This function expects
its input and output arguments to be passed in as individual variables rather than
packed into arrays. If the function is capable of producing one or more outputs, the first
argument is the number of outputs requested by the caller.

void mIfSierpinski(int nargout, mxArray** x, mxArray** vy,
mxArray* iterations, mxArray* draw)

In both cases, the generated functions allocate memory for their return values. If you
do not delete this memory (via mxDestroyArray) when you are done with the output
variables, your program will leak memory.

15-23

15

Libraries

15-24

Your program may call whichever of these functions is more convenient, as they both
invoke your MATLAB file function in an identical fashion. Most programs will likely call
the mIF¥ form of the function to avoid managing the extra arrays required by the mlx
form. The example program in triangle.c calls mIfSierpinski.

mifSierpinski(2, &x, &y, iterations, draw);

In this call, the caller requests two output arguments, X and y, and provides two inputs,
iterations and draw.

If the output variables you pass in to an ml¥ function are not NULL, the mI ¥ function
will attempt to free them using mxDestroyArray. This means that you can reuse output
variables in consecutive calls to mI ¥ functions without worrying about memory leaks.

It also implies that you must pass either NULL or a valid MATLAB array for all output
variables or your program will fail because the memory manager cannot distinguish
between a non-initialized (invalid) array pointer and a valid array. It will try to free a
pointer that is not NULL -- freeing an invalid pointer usually causes a segmentation
fault or similar fatal error.

Using varargin and varargout in a MATLAB Function Interface

If your MATLAB function interface uses varargin or varargout, you must pass them
as cell arrays. For example, if you have N varargins, you need to create one cell array
of size 1-by-N. Similarly, varargouts are returned back as one cell array. The length
of the varargout is equal to the number of return values specified in the function call
minus the number of actual variables passed. As in the MATLAB software, the cell array
representing varagout has to be the last return variable (the variable preceding the
first input variable) and the cell array representing varargins has to be the last formal
parameter to the function call.

For information on creating cell arrays, refer to the C MEX function interface in the
External Interfaces documentation.

For example, consider this MATLAB file interface:
[a,b,varargout] = myfun(x,y,z,varargin)
The corresponding C interface for this is

void mIfMyfun(int numOfRetVars, mxArray **a, mxArray **b,
mxArray **varargout, mxArray *X, mxArray *y,

Call MATLAB Compiler API Functions (mcl*) from C/C++ Code

mxArray *z, mxArray *varargin)

In this example, the number of elements in varargout is (numOfRetVars - 2), where
2 represents the two variables, a and b, being returned. Both varargin and varargout
are single row, multiple column cell arrays.

Caution The C++ shared library interface does not support varargin with zero (0) input
arguments. Calling your program using an empty mwArray results in the compiled
library receiving an empty array with nargin = 1. The C shared library interface
allows you to call mlIFFOO(NULL) (the compiled MATLAB code interprets this as
nargin=0). However, calling FOO((mwArray)NULL) with the C++ shared library
interface causes the compiled MATLAB code to see an empty array as the first input and
interprets nargin=1.

For example, compile some MATLAB code as a C++ shared library using varargin as
the MATLAB function's list of input arguments. Have the MATLAB code display the
variable nargin. Call the library with function FOO() and it won't compile, producing
this error message:

"FOO" : function does not take O arguments
Call the library as:

mwArray junk;
FOO(Junk);
or

FOO((mwArray)NULL);
At runtime, nargin=1. In MATLAB, FOO(Q) is hargin=0 and FOO([]) is nargin=1.

C++ Interfaces for MATLAB Functions Using varargin and varargout

The C++ mIx interface for MATLAB functions does not change even if the functions
use varargin or varargout. However, the C++ function interface (the second set of
functions) changes if the MATLAB function is using varargin or varargout.

For examples, view the generated code for various MATLAB function signatures that use
varargin or varargout.

Note: For simplicity, only the relevant part of the generated C++ function signature is
shown in the following examples.

15-25

] 5 Libraries

15-26

function varargout = foo(varargin)

For this MATLAB function, the following C++ overloaded functions are generated:

No input no output:
void foo()

Only inputs:
void foo(const mwArray& varargin)

Only outputs:
void foo(int nargout, mwArray& varargout)

Most generic form that has both inputs and outputs:
void foo(int nargout, mwArray& varargout,
const mwArray& varargin)

function varargout = foolil, i2, varargin)

For this MATLAB function, the following C++ overloaded functions are generated:

Most generic form that has outputs and all the inputs

void foo(int nargout, mwArray& varargout, const
mwArray& il, const
mwArray& 12, const
mwArray& varargin)

Only inputs:
void foo(const mwArray& i1,
const mwArray& 12, const mwArray& varargin)

function [o1, 02, varargout] = foo(varargin)

For this MATLAB function, the following C++ overloaded functions are generated:

Most generic form that has all the outputs and inputs
void foo(int nargout, mwArray& ol, mwArray& o2,
mwArray& varargout,

function [o1, 02, varargout] = fooli1, i2, varargin)

const mwArray& varargin)

Only outputs:
void foo(int nargout, mwArray& ol, mwArray& o2,
mwArray& varargout)

function [01, 02, varargout] = foolil, i2, varargin)

For this MATLAB function, the following C++ overloaded function is generated:

Most generic form that has all the outputs and
all the inputs
void foo(int nargout, mwArray& ol, mwArray& o2,

mwArray& varargout,
const mwArray& il, const mwArray& i2,
const mwArray& varargin)

Retrieving MATLAB Runtime State Information While Using Shared
Libraries

When using shared libraries (note this does not apply to standalone applications), you

may call functions to retrieve specific information from MATLAB runtime state. For

details, see “M/ATLAB Runtime Startup Options” on page 11-27.

15-27

] 5 Libraries

About Memory Management and Cleanup

In this section...

“Overview” on page 15-28

“Passing mxArrays to Shared Libraries” on page 15-28

Overview

Generated C++ code provides consistent garbage collection via the object destructors
and the MATLAB runtime's internal memory manager optimizes to avoid heap
fragmentation.

If memory constraints are still present on your system, try preallocating arrays in
MATLAB. This will reduce the number of calls to the memory manager, and the degree
to which the heap fragments.

Passing mxArrays to Shared Libraries

When an mxArray is created in an application which uses the MATLAB runtime, it is
created in the managed memory space of the MATLAB runtime.

Therefore, it is very important that you never create mxArrays (or call any other
MATLAB function) before calling mclInitializeApplication.

It is safe to call mxDestroyArray when you no longer need a particular mxArray in
your code, even when the input has been assigned to a persistent or global variable in
MATLAB. MATLAB uses reference counting to ensure that when mxDestroyArray
1s called, if another reference to the underlying data still exists, the memory will

not be freed. Even if the underlying memory is not freed, the mxArray passed to
mxDestroyArray will no longer be valid.

For more information about mclInitializeApplication and
mclTerminateApplication, see “Calling a Shared Library” on page 15-3.

For more information about mxArray, see “Use the mxArray API to Work with MATLAB
Types” on page 13-14.

15-28

Troubleshooting

* “Introduction” on page 16-2

+ “Common Issues” on page 16-3

+ “Address Compilation Failures” on page 16-4

* “Address Failures that Arise During Testing” on page 16-9

+ “Address Failures that Arise When Deploying the Application to End Users” on page
16-13

* “Troubleshoot mbuild” on page 16-15

+ “MATLAB Compiler” on page 16-17

+ “Deployed Applications” on page 16-20

+ “Error and Warning Messages” on page 16-24

16 Troubleshooting

Introduction

16-2

MATLAB Compiler software converts your MATLAB programs into self-contained
applications and software components and enables you to share them with end users
who do not have MATLAB installed. MATLAB Compiler takes MATLAB applications
(MATLAB files, MEX-files, and other MATLAB executable code) as input and generates
redistributable standalone applications or shared libraries. The resulting applications
and components are platform specific.

Another use of MATLAB Compiler is to build C or C++ shared libraries (DLLs on
Windows) from a set of MATLAB files. You can then write C or C++ programs that can
call the functions in these libraries. The typical workflow for building a shared library
is to compile your MATLAB code on a development machine, write a C/C++ driver
application, build an executable from the driver code, test the resulting executable on

that machine, and deploy the executable and MATLAB runtime to a test or customer
machine without MATLAB.

Compiling a shared library is very similar to compiling an executable. The command line
differs as shown:

mcc -B csharedlib:hellolib hello.m
or

mcc -B cpplib:hellolib hello.m

Once you have compiled a shared library, the next step is to create a driver application
that initializes and terminates the shared library as well as invokes method calls. This
driver application can be compiled and linked with your shared library with the mbuild
command. For example:

mbuild helloapp.c hellolib.lib
or

mbuild helloapp.cpp hellolib.lib

The only header file that needs to be included in your driver application is the one
generated by your mcc command (hellolib_h in the above example). See “Integrate C
Shared Libraries” on page 15-8 and “Integrate C++ Shared Libraries” on page 15-12 for
examples of how to correctly access a shared library.

Common lIssues

Common Issues

Some of the most common issues encountered when using MATLAB Compiler generated
standalone executables or shared libraries are:

Compilation fails with an error message. This can indicate a failure during any
one of the internal steps involved in producing the final output.

Compilation succeeds but the application does not execute because required
DLLs are not found. All shared libraries required for your standalone executable

or shared library are contained in the MATLAB runtime. Installing the MATLAB
runtime is required for any of the deployment targets.

Compilation succeeds, and the resultant file starts to execute but then
produces errors and/or generates a crash dump.

The compiled program executes on the machine where it was compiled but
not on other machines.

The compiled program executes on some machines and not others.

If any of these issues apply to you, search for common solutions.

16-3

16 Troubleshooting

Address Compilation Failures

16-4

You typically compile your MATLAB code on a development machine, test the resulting
executable on that machine, and deploy the executable and MATLAB runtime to a test
or customer machine without MATLAB. The compilation process performs dependency
analysis on your MATLAB code, creates an encrypted archive of your code and required
toolbox code, generates wrapper code, and compiles the wrapper code into an executable.
If your application fails to build an executable, the following questions may help you
isolate the problem.

Is your selected compiler supported by MATLAB Compiler?

See the current list of supported compilers at http://www.mathworks.com/support/
compilers/current_release/.

Are error messages produced at compile time?

See error messages in “MATLAB Compiler” on page 16-17.

Did you compile with the verbose flag?

Compilation can fail in MATLAB because of errors encountered by the system compiler
when the generated wrapper code is compiled into an executable. Additional errors and
warnings are printed when you use the verbose flag as such:

mcc -mv myApplication.m
In this example, -m tells MATLAB Compiler to create a standalone application and -v
tells MATLAB Compiler and other processors to display messages about the process.

Are you compiling within or outside of MATLAB?

mcc can be invoked from the operating system command line or from the MATLAB
prompt. When you run mcc inside the MATLAB environment, MATLAB will modify
environment variables in its environment as necessary so mcc will run. Issues with
PATH, LD_LIBRARY_PATH, or other environment variables seen at the operating system

http://www.mathworks.com/support/compilers/current_release/
http://www.mathworks.com/support/compilers/current_release/

Does a simple read/write application such as “Hello World” compile successfully?

command line are often not seen at the MATLAB prompt. The environment that
MATLAB uses for mcc can be listed at the MATLAB prompt. For example:

>>Iset
lists the environment on Windows platforms.

>>Iprintenv
lists the environment on UNIX platforms. Using this path allows you to use mcc from the
operating system command line.

Does a simple read/write application such as “Hello
World” compile successfully?

Sometimes applications won't compile because of MEX-file issues, other toolboxes, or
other dependencies. Compiling a hellowor ld application can determine if MATLAB
Compiler is correctly set up to produce any executable. For example, try compiling:

Ffunction helloworld
disp(“hello world®)

with:

>>mcc -mv helloworld.m

Have you tried to compile any of the examples in MATLAB
Compiler help?

The source code for all examples is provided with MATLAB Compiler and is located in
matlabroot\extern\examples\compiler, where matlabroot is the root folder of
your MATLAB installation.

Did the MATLAB code compile successfully before this
failure?

The three most common reasons for MATLAB code to stop compiling are:

A change in the selection of the system compiler — It is possible to inadvertently
change the system compiler for versions of MATLAB that store preferences in a

16-5

16 Troubleshooting

16-6

common folder. For example, MATLAB 7.0.1 (R14SP1) and MATLAB 7.0.4 (R14SP2)
store their preferences in the same folder. Changing the system compiler in R14SP1
will also change the system compiler in R14SP2.

An upgrade to MATLAB that didn't include an upgrade to MATLAB Compiler —

The versions of MATLAB Compiler and MATLAB must be the same in order to work
together. It is possible to see conflicts in installations where the MATLAB installation
is local and the MATLAB Compiler installation is on a network or vice versa.

Are you receiving errors when trying to compile a
standalone executable?

If you are not receiving error messages to help you debug your standalone application,
write an application to display the warnings or error messages to the console.

Are you receiving errors when trying to compile a shared
library?

Errors at compile time can indicate issues with either mcc or mbui ld. For
troubleshooting mcc issues, see the previous section on compile time issues. It is
recommended that your driver application be compiled and linked using mbui Id. mbuild
can be executed with the -v switch to provide additional information on the compilation
process. If you receive errors at this stage, ensure that you are using the correct header
files and/or libraries produced by mcc, in your C or C++ driver. For example:

mcc -B csharedlib:hellolib hello.m
produces hellolib.h, which is required to be included in your C/C++ driver, and
hellolib.libor hellolib.so, which is required on the mbui ld command line.

Is your MATLAB obiject failing to load?

If your MATLAB object fails to load, it is typically a result of the MATLAB runtime not
finding required class definitions.

When working with MATLAB objects, remember to include the following statement in
your MAT file:

If you are compiling a driver application, are you using mbuild2

%#function class_constructor

Using the %#function pragma in this manner forces dependency analyzer to load
needed class definitions, enabling the “MATLAB runtime” to successfully load the object.

If you are compiling a driver application, are you using

mbuild?

MathWorks recommends and supports using mbui ld to compile your driver application.
mbui ld is designed and tested to correctly build driver applications. It will ensure

that all MATLAB header files are found by the C/C++ compiler, and that all necessary
libraries are specified and found by the linker.

Are you trying to compile your driver application using
Microsoft Visual Studio or another IDE?

If using an IDE, in addition to linking to the generated export library, you need to
include an additional dependency to mcImcrrt. lib. This library is provided for all
supported third-party compilers in matlabroot\extern\lib\vendor-name.

Are you importing the correct versions of import libraries?

If you have multiple versions of MATLAB installed on your machine, it is possible

that an older or incompatible version of the library is referenced. Ensure that the only
MATLAB library that you are linking to is mcImcrrt. lib and that it is referenced from
the appropriate vendor folder. Do not reference libraries as libmx or libut. In addition,
verify that your library path references the version of MATLAB that your shared library
was built with.

Are you able to compile the matrixdriver example?

Typically, if you cannot compile the examples in the documentation, it indicates an issue
with the installation of MATLAB or your system compiler. See “Integrate C Shared

16-7

16 Troubleshooting

16-8

Libraries” on page 15-8 and “Integrate C++ Shared Libraries” on page 15-12 for these
examples.

Do you get the MATLAB: 118n: InconsistentLocale
Warning?
The warning message

MATLAB: 118n:InconsistentLocale - The system locale setting,
system_locale_name, is different from the user locale

setting, user_locale_name

indicates a mismatch between locale setting on Microsoft Windows systems. This may
affect your ability to display certain characters. For information about changing the
locale settings, see your operating system Help.

Address Failures that Arise During Testing

Address Failures that Arise During Testing

After you have successfully compiled your application, the next step is to test it on a
development machine and deploy it on a target machine. Typically the target machine
does not have a MATLAB installation and requires that the MATLAB runtime be
installed. A distribution includes all of the files that are required by your application to
run, which include the executable, deployable archive and the MATLAB runtime.

See “Deploying to Developers” on page 11-3 and “Deploying to End Users” on page 11-6
for information on distribution contents for specific application types and platforms.

Test the application on the development machine by running the application against

the MATLAB runtime shipped with MATLAB Compiler. This will verify that library
dependencies are correct, that the deployable archive can be extracted and that all
MATLAB code, MEX—files and support files required by the application have been
included in the archive. If you encounter errors testing your application, the questions in
the column to the right may help you isolate the problem.

Are you able to execute the application from MATLAB?

On the development machine, you can test your application's execution by issuing
lapplication-name at the MATLAB prompt. If your application executes within
MATLAB but not from outside, this can indicate an issue with the system PATH variable.

Does the application begin execution and result in MATLAB
or other errors?

Ensure that you included all necessary files when compiling your application (see the
readme. txt file generated with your compilation for more details).

Functions that are called from your main MATLAB file are automatically included
by MATLAB Compiler; however, functions that are not explicitly called, for example
through EVAL, need to be included at compilation using the —a switch of the mcc
command. Also, any support files like .mat, . txt, or .html files need to be added to
the archive with the —a switch. There is a limitation on the functionality of MATLAB
and associated toolboxes that can be compiled. Check the documentation to see

16-9

16 Troubleshooting

16-10

that the functions used in your application's MATLAB files are valid. Check the file
mccExcludedFiles. 10og on the development machine. This file lists all functions called
from your application that cannot be compiled.

Does the application emit a warning like "MATLAB file may
be corrupt"?

See the listing for this error message in “MATLAB Compiler” on page 16-17 for
possible solutions.

Do you have multiple MATLAB versions installed?

Executables generated by MATLAB Compiler are designed to run in an environment
where multiple versions of MATLAB are installed. Some older versions of MATLAB may
not be fully compatible with this architecture.

On Windows, ensure that the matlabroot\runtime\win32]win64 of the version of
MATLAB in which you are compiling appears ahead of matlabroot\runtime\win32]
win64 of other versions of MATLAB installed on the PATH environment variable on your
machine.

Similarly, on UNIX, ensure that the dynamic library paths (LD_LI1BRARY_PATH on
Linux) match. Do this by comparing the outputs of 'printenv at the MATLAB prompt
and printenv at the shell prompt. Using this path allows you to use mcc from the
operating system command line.

If you are testing a standalone executable or shared
library and driver application, did you install the MATLAB
Runtime?

All shared libraries required for your standalone executable or shared library are

contained in theMATLAB runtime. Installing the MATLAB runtime is required for any
of the deployment targets.

Do you receive an error message about a missing DLL2

Do you receive an error message about a missing DLL?

Error messages indicating missing DLLs such as mcImcrrt7x.dl1 or mcImcrrt7x.so
are generally caused by incorrect installation of the MATLAB runtime. It is also possible
that the MATLAB runtime is installed correctly, but that the PATH,LD_L IBRARY_PATH,
or DYLD_LIBRARY_PATH variables are set incorrectly. For information on installing

the MATLAB runtime on a deployment machine, refer to “Working with the MATLAB
Runtime” on page 11-13.

Caution Do not solve these problems by moving libraries or other files within the
MATLAB runtime folder structure. The run-time system is designed to accommodate
different MATLAB runtime versions operating on the same machine. The folder
structure is an important part of this feature.

Are you receiving errors when trying to run the shared
library application?

Calling MATLAB Compiler generated shared libraries requires correct initialization and
termination in addition to library calls themselves. For information on calling shared
libraries, see “Call MATLAB Compiler API Functions (mcl¥) from C/C++ Code” on page
15-18.

Some key points to consider to avoid errors at run time:

* Ensure that the calls to mclinitializeApplication and 1ibnamelnitialize
are successful. The first function enables construction of MATLAB runtime instances.
The second creates the MATLAB runtime instance required by the library named
libname. If these calls are not successful, your application will not execute.

* Do not use any mw- or mx-functions before calling mclinitializeApplication.
This includes static and global variables that are initialized at program start.
Referencing mw- or mx-functions before initialization results in undefined behavior.

* Do not re-initialize (call mclinitializeApplication) after terminating
it with mclTerminateApplication. The mclinitializeApplication
andlibnamelnitialize functions should be called only once.

* Ensure that you do not have any library calls after mclTerminateApplication.

* Ensure that you are using the correct syntax to call the library and its functions.

16-11

16 Troubleshooting

16-12

Does your system’s graphics card support the graphics
application?

In situations where the existing hardware graphics card does not support the graphics
application, you should use software OpenGL. OpenGL libraries are visible for an
application by appending matlab/sys/opengl/lib/arch to the LD_LIBRARY_PATH.
For example:

setenv LD_LIBRARY_PATH $LD_LIBRARY_PATH:matlab/sys/opengl/lib/arch

Is OpenGL properly installed on your system?

When searching for OpenGL libraries, the MATLAB runtime first looks on the

system library path. If OpenGL is not found there, it will use the LD_LIBRARY_PATH
environment variable to locate the libraries. If you are getting failures due to the
OpenGL libraries not being found, you can append the location of the OpenGL libraries to
the LD_LIBRARY_PATH environment variable. For example:

setenv LD_LIBRARY_PATH $LD_LIBRARY_PATH:matlab/sys/opengl/lib/arch

Address Failures that Arise When Deploying the Application to End Users

Address Failures that Arise When Deploying the Application to End

Users

After the application is working on the test machine, failures can be isolated in end-
user deployment. The end users of your application need to install the MATLAB
runtime on their machines. The MATLAB runtime includes a set of shared libraries that
provides support for all features of MATLAB. If your application fails during end-user
deployment, the following questions in the column to the right may help you isolate the
problem.

Note: There are a number of reasons why your application might not deploy to end
users, after running successfully in a test environment. For a detailed list of guidelines
for writing MATLAB code that can be consumed by end users, see “Write Deployable
MATLAB Code” on page 7-10

Is the MATLAB Runtime installed?

All shared libraries required for your standalone executable or shared library are
contained in the MATLAB runtime. Installing the MATLAB runtime is required for any
of the deployment targets. See“Working with the MATLAB Runtime” on page 11-13 for
complete information.

If running on UNIX or Mac, did you update the dynamic
library path after installing the MATLAB Runtime?

For information on installing the MATLAB runtime on a deployment machine, refer to
“Working with the MATLAB Runtime” on page 11-13.

Do you receive an error message about a missing DLL?

Error messages indicating missing DLLs such as mcImcrrt7x.dl1 or mcImcrrt7x.so

are generally caused by incorrect installation of the MATLAB runtime. It is also possible
that the MATLAB runtime is installed correctly, but that the PATH, LD_LIBRARY_PATH,
or DYLD_LIBRARY_PATH variables are set incorrectly. For information on installing

16-13

16 Troubleshooting

16-14

the MATLAB runtime on a deployment machine, refer to “Working with the MATLAB
Runtime” on page 11-13.

Caution Do not solve these problems by moving libraries or other files within the
MATLAB runtime folder structure. The run-time system is designed to accommodate
different MATLAB runtime versions operating on the same machine. The folder
structure is an important part of this feature.

Do you have write access to the directory the application is
installed in?

The first operation attempted by a compiled application is extraction of the deployable
archive. If the archive is not extracted, the application cannot access the compiled
MATLAB code and the application fails. If the application has write access to the
installation folder, a subfolder named application-name_mcr is created the first time
the application is run. After this subfolder is created, the application no longer needs
write access for subsequent executions.

Are you executing a newer version of your application?

When deploying a newer version of an executable, both the executable needs to be
redeployed, since it also contains the embedded deployable archive. The deployable
archive is keyed to a specific compilation session. Every time an application is
recompiled, a new, matched deployable archive is created. As above, write access is
required to expand the new deployable archive. Deleting the existing application-
name_mcr folder and running the new executable will verify that the application can
expand the new deployable archive.

Troubleshoot mbuild

Troubleshoot mbuild

This section identifies some of the more common problems that might occur when
configuring mbui Id to create standalone applications.

Options File Not Writable. When you run mbuilld -setup, mbui ld makes a copy
of the appropriate options file and writes some information to it. If the options file is not
writable, you are asked if you want to overwrite the existing options file. If you choose to
do so, the existing options file is copied to a new location and a new options file is created.

Directory or File Not Writeable. If a destination folder or file is not writable, ensure
that the permissions are properly set. In certain cases, make sure that the file is not in
use.

mbuild Generates Errors. If you run mbuild filename and get errors, it may be
because you are not using the proper options file. Run mbui ld -setup to ensure proper
compiler and linker settings.

Compiler and/or Linker Not Found. On Windows, if you get errors such as
unrecognized command or Fille not found, make sure the command-line tools are
installed and the path and other environment variables are set correctly in the options
file. For Microsoft Visual Studio®, for example, make sure to run vcvars32.bat (MSVC
6.x and earlier) or vsvars32.bat (MSVC 8.x and later).

mbuild Not a Recognized Command. If mbuild is not recognized, verify that
matlabroot\bin is in your path. On UNIX, it may be necessary to rehash.

mbuild Works from the Shell But Not from MATLAB (UNIX). Ifthe command

mcc -m hello

works from the UNIX command prompt but not from the MATLAB prompt, you may
have a problem with your .cshrc file. When MATLAB launches a new C shell to
perform compilations, it executes the . cshrc script. If this script causes unexpected
changes to the PATH environment variable, an error may occur. You can test this before
starting MATLAB by performing the following:

setenv SHELL /bin/sh
If this works correctly, then you should check your .cshrc file for problems setting the
PATH environment variable.

Cannot Locate Your Compiler (Windows). If mbui Id has difficulty locating your
installed compilers, it is useful to know how it finds compilers. mbui Id automatically

16-15

16 Troubleshooting

detects your installed compilers by first searching for locations specified in the following
environment variables:

* MSVCDIR for Microsoft Visual C++, Version 6.0 or 8.0
Next, mbui Id searches the Windows registry for compiler entries.

Internal Error when Using mbuild -setup (Windows). Some antivirus software
packages may conflict with the mbuild -setup process. If you get an error message
during mbuild -setup of the following form

mex.bat: internal error in sub get compiler_info(): don"t

recognize <string>

then you need to disable your antivirus software temporarily and rerun mbuild -setup.
After you have successfully run the setup option, you can re-enable your antivirus
software.

Verification of mbuild Fails. If none of the previous solutions addresses your
difficulty with mbui Id, contact Technical Support at MathWorks at http://
www .mathworks.com/contact_TS.html.

16-16

http://www.mathworks.com/contact_TS.html
http://www.mathworks.com/contact_TS.html

MATLAB Compiler

MATLAB Compiler

Typically, problems that occur when building standalone applications involve mbui ld.
However, it is possible that you may run into some difficulty with MATLAB Compiler. A
good source for additional troubleshooting information for the product is the MATLAB
Compiler Product Support page at the MathWorks Web site.

libmwlapack: load error: stgsy2_. This error occurs when a customer has both the
R13 and the R14 version of MATLAB or MCR/MGL specified in the folder path and the
R14 version fails to load because of a lapack incompatibility.

Licensing Problem. If you do not have a valid license for MATLAB Compiler , you
will get an error message similar to the following when you try to access MATLAB
Compiler:

Error: Could not check out a Compiler License:

No such feature exists.

If you have a licensing problem, contact MathWorks. A list of contacts at MathWorks is
provided at the beginning of this document.

loadlibrary usage (MATLAB loadlibrary command). The following are
common error messages encountered when attempting to compile the MATLAB
loadlibrary function or run an application that uses the MATLAB loadlibrary
function with MATLAB Compiler:

* Output argument 'notfound' was not assigned during call to 'loadlibrary'.

- Warning: Function call testloadlibcompile
invokes inexact match
d:\work\testLoadLibCompile_mcr\
testLoadLibCompile\testLoadLibCompile.m.

??? Error using ==> loadlibrary

Call to Perl failed. Possible error processing header file.
Output of Perl command:

Error using ==> perl

All input arguments must be valid strings.

Error in ==> testLoadLibCompile at 4

« MATLAB:loadlibrary:cannotgeneratemfile
There was an error running the loader mfile.
Use the mfilename option
to produce a file that you can debug and fix.

16-17

http://www.mathworks.com/support/product/product.html?product=CO
http://www.mathworks.com/support/product/product.html?product=CO

16 Troubleshooting

16-18

Please report this

error to the MathWorks so we can improve this
function.

??? Error using ==> feval

Undefined function or variable "GHlinkTest_proto-”.

Error in ==> loadtest at 6

For information about how to properly invoke the MATLAB loadl ibrary function with
MATLAB Compiler, see “Load MATLAB Libraries using loadlibrary” on page 7-16 in the
Deploying MATLAB Code section in your product user's guide.

MATLAB Compiler Does Not Generate the Application. If you experience other
problems with MATLAB Compiler, contact Technical Support at MathWorks at http://
www . mathworks.com/contact _TS.html.

"MATLAB file may be corrupt" Message Appears. If you receive the message

This MATLAB file does not have proper version information and

may be corrupt. Please delete the extraction directory and

rerun the application.

when you run your standalone application that was generated by MATLAB Compiler,
you should check the following:

* Do you have a startup.m file that calls addpath? If so, this will cause run-time
errors. As a workaround, use isdeployed to have the addpath command execute
only from MATLAB. For example, use a construct such as:

if ~isdeployed
addpath(path);
end

* Verify that the .ctF archive file self extracted and that you have write permission to
the folder.

+ Verify that none of the files in the <application name>_mcr folder have been
modified or removed. Modifying this folder is not supported, and if you have modified
it, you should delete it and redeploy or restart the application.

+ If none of the above possible causes apply, then the error is likely caused by a
corruption. Delete the <application name>_mcr folder and run the application.

Missing Functions in Callbacks. If your application includes a call to a function in
a callback string or in a string passed as an argument to the feval function or an ODE
solver, and this is the only place in your MATLAB file this function is called, MATLAB

http://www.mathworks.com/contact_TS.html
http://www.mathworks.com/contact_TS.html

MATLAB Compiler

Compiler will not compile the function. MATLAB Compiler does not look in these text
strings for the names of functions to compile. See “Fixing Callback Problems: Missing
Functions” on page 17-3 for more information.

"M CRInstance not available" Message Appears. If you receive the message
MCRInstance not available when you try to run a standalone application that

was generated with MATLAB Compiler, it can be that the MATLAB runtime is not
located properly on your path or the deployable archive is not in the proper folder (if you
extracted it from your binary).

The UNIX verification process is the same, except you use the appropriate UNIX path
information.

To verify that the MATLAB runtime is properly located on your path, from a
development Windows machine, confirm that matlabroot\runtime\win32|win64,
where matlabroot is your root MATLAB folder, appears on your system path ahead of
any other MATLAB installations.

From a Windows target machine, verify that <mcr_root>\<ver>\runtime\win32]
win64, where <mcr_root> is your root MATLAB runtime folder, appears on your
system path. To verify that the deployable archive that MATLAB Compiler generated
in the build process resides in the same folder as your program's file, look at the folder
containing the program's file and make sure the corresponding .ctf file is also there.

No Info.plist file in application bundle or no.... On 64-bit Macintosh, indicates
the application is not being executed through the bundle.

16-19

16 Troubleshooting

Deployed Applications

16-20

Failed to decrypt file. The MATLAB file "<ctf_root>\toolbox\compiler\deploy
\matlabre.m" cannot be executed. The application is trying to use a deployable
archive that does not belong to it. Applications and deployable archives are tied together
at compilation time by a unique cryptographic key, which is recorded in both the
application and the deployable archive. The keys must match at run time. If they don't
match, you will get this error.

To work around this, delete the *_mcr folder corresponding to the deployable archive and
then rerun the application. If the same failure occurs, you will likely need to recompile
the application using MATLAB Compiler and copy both the application binary and the
deployable archive into the installation folder.

This application has requested the run time to terminate in an unusual

way. This indicates a segmentation fault or other fatal error. There are too many
possible causes for this message to list them all.

To try to resolve this problem, run the application in the debugger and try to get a stack
trace or locate the line on which the error occurs. Fix the offending code, or, if the error
occurs in a MathWorks library or generated code, contact MathWorks technical support.

Checking access to X display <IP-address>:0.0 . ..

If no response hit *C and fix host or access control to host.
Otherwise, checkout any error messages that follow and fix . ..
Successful..... This message can be ignored.

?7?? Error: File: /home/username/<MATLAB file_name>

Line: 1651 Column: 8

Arguments to IMPORT must either end with ".*"

or else specify a fully qualified class name:

"<class_name>" fails this test. The import statement is referencing a Java class
(<class_name>) that MATLAB Compiler (if the error occurs at compile time) or the
MATLAB runtime (if the error occurs at run time) cannot find.

To work around this, ensure that the JAR file that contains the Java class is stored
in a folder that is on the Java class path. (See matlabroot/toolbox/local/
classpath. txt for the class path.) If the error occurs at run time, the classpath

1s stored in matlabroot/toolbox/local/classpath.txt when running on the
development machine. It is stored in <mcr_root>/toolbox/local/classpath.txt
when running on a target machine.

Warning: Unable to find Java library:
matlabroot\sys\java\jre\win32 | win64\jre<version>\bin\client\jvm.dll

Deployed Applications

Warning: Disabling Java support. This warning indicates that a compiled
application can not find the Java virtual machine, and therefore, the compiled
application cannot run any Java code. This will affect your ability to display graphics.
To resolve this, ensure that jvm.dl1 is in the matlabroot\sys\java\jre\win32|
win64\jre<version>\bin\client folder and that this folder is on your system path.

Warning: matlabroot\toolbox\local\pathdef.m not found.

Toolbox Path Cache is not being used. Type 'help toolbox_path_cache' for more
info. The pathdef.m file defines the MATLAB startup path. MATLAB Compiler does
not include this file in the generated deployable archive because the MATLAB runtime
path is a subset of the full MATLAB path.

This message can be ignored.

Undefined function or variable 'matlabre'. When MATLAB or the MATLAB
runtime starts, they attempt to execute the MATLAB file matlabrc.m. This message
means that this file cannot be found.

To work around this, try each of these suggestions in this order:

* Ensure that your application runs in MATLAB (uncompiled) without this error.
* Ensure that MATLAB starts up without this error.
+ Verify that the generated deployable archive contains a file called matlabrc.m.

+ Verify that the generated code (in the *_mcc_component_data.c™ file) adds the
deployable archive folder containing matlabrc.m to the MATLAB runtime path.

* Delete the *_mcr folder and rerun the application.

* Recompile the application.

This MATLAB file does not have proper version information and

may be corrupt. Please delete the extraction directory and rerun the
application. The MATLAB file <MATLAB file> cannot be executed.
MATLAB:err_parse_cannot_run_m_file. This message is an indication that the
MATLAB runtime has found nonencrypted MATLAB files on its path and has attempted
to execute them. This error is often caused by the use of addpath, either explicitly in
your application, or implicitly in a startup.m file. If you use addpath in a compiled
application, you must ensure that the added folders contain only data files. (They cannot
contain MATLAB files, or you'll get this error.)

To work around this, protect your calls to addpath with the isdeployed function.

This application has failed to start because mclmerrt7x.dll was not found. Re-
installing the application may fix this problem. mcImcrrt7x.dl1l contains the
public interface to the MATLAB runtime. This library must be present on all machines

16-21

16 Troubleshooting

that run applications generated by MATLAB Compiler. Typically, this means that either
the MATLAB runtime is not installed on this machine, or that the PATH does not contain
the folder where this DLL is located.

To work around this, install the MATLAB runtime or modify the path appropriately. The
path must contain <mcr_root>\<version>\runtime\<arch>, for example: c:\mcr
\v73\runtime\win32|win64.

Linker cannot find library and fails to create standalone application (win32
and win64). If you try building your standalone application without mbui Id, you
must link to the following dynamic library:

mcimerrt.lib

This library is found in one of the following locations, depending on your architecture:

matlabroot\extern\lib\win32\arch
matlabroot\extern\lib\win64\arch

where arch is microsoft or watcom.

Version 'GCC_4.2.0' not found. When running on Linux platforms, users may
report that a run time error occurs that states that the GCC_4.2.0 library is not found by
applications built with MATLAB Compiler.

To resolve this error, do the following:

1 Navigate to matlabroot/sys/os/glnx86
2 Rename the following files with a prefix of old_:

+ libgcc _s.so.1

* libstdc++.s0.6.0.8

+ libgfortran.so.1.0.0

For example, rename libgcc_s.so.1toold_libgcc _s.so.l. you must rename

all three of the above files. Alternately, you can create a subfolder named old and
move the files there.

Error: library melmerrt76.d1l not found. This error can occur for the following
reasons:

* The machine on which you are trying to run the application an different, incompatible
version of the MATLAB runtime installed on it than the one the application was
originally built with.

16-22

Deployed Applications

* You are not running a version of MATLAB Compiler compatible with the MATLAB
runtime version the application was built with.

To solve this problem, on the deployment machine, install the version of MATLAB you
used to build the application.

Invalid .NET Framework.\n Either the specified framework was not found

or is not currently supported. This error occurs when the .NET Framework
version your application is specifying (represented by n) is not supported by the current
version of MATLAB Compiler. See the MATLAB Builder NE Release Notes for a list of
supported .NET Framework versions.

MATLAB:118n: InconsistentLocale. The warning message

MATLAB: 118n:InconsistentLocale - The system locale setting,
system_locale_name, is different from the user locale
setting, user_locale_name

indicates a mismatch between locale setting on Microsoft Windows systems. This may
affect your ability to display certain characters. For information about changing the
locale settings, see your operating system Help.

System.AccessViolationException: Attempted to read or write
protected memory. The message:

System.ArgumentException: Generate Queries
threw General Exception:
System.AccessViolationException: Attempted to
read or write protected memory.
This is often an indication that other memory is corrupt.
indicates a library initialization error caused by a Microsoft Visual Studio project linked
against a MCLMCRRT7XX .DLL placed outside matlabroot.

16-23

16 Troubleshooting

Error and Warning Messages

16-24

In this section...

“About Error and Warning Messages” on page 16-24
“Compile-Time Errors” on page 16-24
“Warning Messages” on page 16-27

“Dependency Analysis Errors” on page 29

About Error and Warning Messages

This appendix lists and describes error messages and warnings generated by MATLAB
Compiler. Compile-time messages are generated during the compile or link phase. It

is useful to note that most of these compile-time error messages should not occur if the
MATLAB software can successfully execute the corresponding MATLAB file.

Use this reference to:

+ Confirm that an error has been reported
* Determine possible causes for an error

* Determine possible ways to correct an error

When using MATLAB Compiler, if you receive an internal error message, record the
specific message and report it to Technical Support at http://www.mathworks.com/
contact_TS.html.

Compile-Time Errors

Error: An error occurred while shelling out to mex/mbuild (error

code = errorno). Unable to build (specify the -v option for more

information). MATLAB Compiler reports this error if mbui ld or mex generates an
error.

Error: An error occurred writing to file "filename™ reason. The file can not be
written. The reason is provided by the operating system. For example, you may not have
sufficient disk space available to write the file.

Error: Cannot write file "filename" because MCC has already created a file
with that name, or a file with that name was specified as a command line

http://www.mathworks.com/contact_TS.html
http://www.mathworks.com/contact_TS.html

Error and Warning Messages

argument. MATLAB Compiler has been instructed to generate two files with the
same name. For example:

mcc -W lib:liba liba -t % Incorrect

Error: Could not check out a Compiler license. No additional MATLAB Compiler
licenses are available for your workgroup.

Error: Initializing preferences required to run the application. The .ctf file
and the corresponding target (standalone application or shared library) created using
MATLAB Compiler do not match. Ensure that the .ctf file and the target file are
created as output from the same mcc command. Verify the time stamp of these files to
ensure they were created at the same time. Never combine the .ctfF file and the target
application created during execution of different mcc commands.

Error: File: "filename" not found. A specified file can not be found on the path.
Verify that the file exists and that the path includes the file's location. You can use the -
I option to add a folder to the search path.

Error: File: "filename" is a script MATLAB file and cannot be compiled with the
current Compiler. MATLAB Compiler cannot compile script MATLAB files. To learn
how to convert script MATLAB files to function MATLAB files, see “Converting Script
MATLAB Files to Function MATLAB Files” on page 13-15.

Error: File: filename Line: # Column: # A variable cannot be made storageclass1l
after being used as a storageclass2. You cannot change a variable's storage class
(global/local/persistent). Even though MATLAB allows this type of change in scope,
MATLAB Compiler does not.

Error: Found illegal whitespace character in command line option: "string". The
strings on the left and right side of the space should be separate arguments to
MCC. For example:

mcc("-m*, "-v*, “hello®)% Correct
mcc("-m -v", "hello™) % Incorrect

Error: Improper usage of option -optionname. Type "mcc -?" for usage
information. You have incorrectly used a MATLAB Compiler option. For more
information about MATLAB Compiler options, see “ mecc Command Arguments Listed
Alphabetically”, or type mcc -? at the command prompt.

Error: libraryname library not found. MATLAB has been installed incorrectly.

16-25

16 Troubleshooting

16-26

Error: No source files were specified (-? for help). You must provide MATLAB
Compiler with the name of the source file(s) to compile.

Error: "optionname" is not a valid -option option argument. You must use an
argument that corresponds to the option. For example:

mcc -W main ... % Correct
mcc -W mex ... % Incorrect

Error: Out of memory. Typically, this message occurs because MATLAB Compiler
requests a larger segment of memory from the operating system than is currently
available. Adding additional memory to your system can alleviate this problem.

Error: Previous warning treated as error. When you use the -w error option,
this error appears immediately after a warning message.

Error: The argument after the -option option must contain a colon. The
format for this argument requires a colon. For more information, see “ mcc Command
Arguments Listed Alphabetically”, or type mcc -? at the command prompt.

Error: The environment variable MATLAB must be set to the MATLAB root
directory. On UNIX, the MATLAB and LM_LICENSE_FILE variables must be set. The
mcc shell script does this automatically when it is called the first time.

Error: The license manager failed to initialize (error code is
errornumber). You do not have a valid MATLAB Compiler license or no additional
MATLAB Compiler licenses are available.

Error: The option -option is invalid in modename mode (specify -? for
help). The specified option is not available.

Error: The specified file "filename" cannot be read. There is a problem with your
specified file. For example, the file is not readable because there is no read permission.

Error: The -optionname option requires an argument (e.g.
"proper_example_usage"). You have incorrectly used a MATLAB Compiler option.
For more information about MATLAB Compiler options, see “ mcc Command Arguments
Listed Alphabetically”, or type mcc -? at the command prompt.

Error: -x is no longer supported. MATLAB Compiler no longer generates MEX-files
because there is no longer any performance advantage to doing so. The MATLAB JIT
Accelerator makes compilation for speed obsolete.

Error and Warning Messages

Error: Unable to open file "filename":<string>. There is a problem with your
specified file. For example, there is no write permission to the output folder, or the disk is
full.

Error: Unable to set license linger interval (error code is errornumber). A
license manager failure has occurred. Contact Technical Support with the full text of the
error message.

Error: Unknown warning enable/disable string: warningstring. -w enable:,
-w disable:, and -w error: require you to use one of the warning string identifiers
listed in “Warning Messages” on page 16-27.

Error: Unrecognized option: -option. The option is not a valid option. See “ mcc
Command Arguments Listed Alphabetically”, for a complete list of valid options for
MATLAB Compiler, or type mcc -? at the command prompt.

Warning Messages

This section lists the warning messages that MATLAB Compiler can generate. Using the
-w option for mcc, you can control which messages are displayed. Each warning message
contains a description and the warning message identifier string (in parentheses) that
you can enable or disable with the -w option. For example, to produce an error message
if you are using a trial MATLAB Compiler license to create your standalone application,
you can use:

mcc -w error:trial_license -mvg hello

To enable all warnings except those generated by the save command, use:
mcc -w enable -w disable:trial_license ...

To display a list of all the warning message identifier strings, use:

mcc -w list -m mfilename

For additional information about the -w option, see “ mcc Command Arguments Listed
Alphabetically”.

Warning: File: filename Line: # Column: # The #function pragma expects a

list of function names. (pragma_function_missing_names) This pragma informs
MATLAB Compiler that the specified function(s) provided in the list of function names

16-27

http://www.mathworks.com/support/

16 Troubleshooting

16-28

will be called through an Feval call. This will automatically compile the selected
functions.

Warning: MATLAB file "filename" was specified on the command line with

full path of "pathname", but was found on the search path in directory
"directoryname" first. (specified_file_mismatch) MATLAB Compiler detected an
inconsistency between the location of the MATLAB file as given on the command line and
in the search path. MATLAB Compiler uses the location in the search path. This warning
occurs when you specify a full path name on the mcc command line and a file with the
same base name (file name) is found earlier on the search path. This warning is issued in
the following example if the file aFile.m exists in both dirl and dir2:

mcc -m -1 /dirl /dir2/afile.m

Warning: The file filename was repeated on MATLAB Compiler command
line. (repeated_file) This warning occurs when the same file name appears more than
once on the compiler command line. For example:

mcc -m sample.m sample.m % Will generate the warning

Warning: The name of a shared library should begin with the letters "lib".
"libraryname" doesn't. (missing lib_sentinel) This warning is generated if the name
of the specified library does not begin with the letters “lib”. This warning is specific to
UNIX and does not occur on the Windows operating system. For example:

mcc -t -W lib:liba -T link:lib a0 al % No warning
mcc -t -W lib:a -T link:lib a0 al % Will generate a warning

Warning: All warnings are disabled. (all_warnings) This warning displays all
warnings generated by MATLAB Compiler. This warning is disabled.

Warning: A line has numl characters, violating the maximum page width
(num?2). (max_page_width_violation) This warning is generated if there are lines that
exceed the maximum page width, num2. This warning is disabled.

Warning: The option -optionname is ignored in modename mode (specify -? for
help). (switch_ignored) This warning is generated if an option is specified on the mcc
command line that is not meaningful in the specified mode. This warning is enabled.

Warning: Unrecognized Compiler pragma
"pragmaname". (unrecognized_pragma) This warning is generated if you use an
unrecognized pragma. This warning is enabled.

Error and Warning Messages

Warning: "functionnamel” is a MEX- or P-file being referenced from
"functionname?2". (mex_or_p_file) This warning is generated if functionname2 calls
functionnamel, which is a MEX- or P-file. This warning is enabled.

Note A link error is produced if a call to this function is made from standalone code.

Trial Compiler license. The generated application will expire 30 days from
today, on date. (irial_license) This warning displays the date that the deployed
application will expire. This warning is enabled.

Dependency Analysis Errors

+ “MATLAB Runtime/Dispatcher Errors” on page 16-29
+ “XML Parser Errors” on page 16-29

MATLAB Runtime/Dispatcher Errors

These errors originate directly from the MATLAB runtime/Dispatcher. If one
of these error occurs, report it to Technical Support at MathWorks at http://
www .mathworks.com/contact_TS.html.

XML Parser Errors

These errors appear as

depfun Error: XML error: <message>

Where <message> is a message returned by the XML parser. If this error occurs,
report it to Technical Support at MathWorks at http://www.mathworks.com/
contact_TS._html.

16-29

http://www.mathworks.com/contact_TS.html
http://www.mathworks.com/contact_TS.html
http://www.mathworks.com/contact_TS.html
http://www.mathworks.com/contact_TS.html

16-30

Limitations and Restrictions

+ “MATLAB Compiler Limitations” on page 17-2
+ “Licensing Terms and Restrictions on Compiled Applications” on page 17-9
+ “MATLAB Functions That Cannot Be Compiled” on page 17-10

] 7 Limitations and Restrictions

MATLAB Compiler Limitations

In this section...

“Compiling MATLAB and Toolboxes” on page 17-2

“Fixing Callback Problems: Missing Functions” on page 17-3
“Finding Missing Functions in a MATLAB File” on page 17-5
“Suppressing Warnings on the UNIX System” on page 17-5

“Cannot Use Graphics with the -nojvm Option” on page 17-5

“Cannot Create the Output File” on page 17-5

“No MATLAB File Help for Compiled Functions” on page 17-6

“No MATLAB Runtime Versioning on Mac OS X” on page 17-6

“Older Neural Networks Not Deployable with MATLAB Compiler” on page 17-6
“Restrictions on Calling PRINTDLG with Multiple Arguments in Compiled Mode” on
page 17-7

“Compiling a Function with WHICH Does Not Search Current Working Directory” on
page 17-7

“Restrictions on Using C++ SETDATA to Dynamically Resize an MWArray” on page
17-8

Compiling MATLAB and Toolboxes

MATLAB Compiler supports the full MATLAB language and almost all toolboxes based
on MATLAB. However, some limited MATLAB and toolbox functionality is not licensed
for compilation.

* Most of the prebuilt graphical user interfaces included in MATLAB and its companion
toolboxes will not compile.

* Functionality that cannot be called directly from the command line will not compile.

* Some toolboxes, such as Symbolic Math Toolbox™, will not compile.

Compiled applications can only run on operating systems that run MATLAB. Also, since

the MATLAB runtime is approximately the same size as MATLAB, applications built

with MATLAB Compiler need specific storage memory and RAM to operate. For the most
up-to-date information about system requirements, go to the MathWorks Web site.

17-2

http://www.mathworks.com/support/sysreq/current_release/

MATLAB Compi|er Limitations

To see a full list of MATLAB Compiler limitations, visit http://www.mathworks.com/
products/compiler/compiler_support.html.

Note: See “MATLAB Functions That Cannot Be Compiled” on page 17-10 for a list of
functions that cannot be compiled.

Fixing Callback Problems: Missing Functions

When MATLAB Compiler creates a standalone application, it compiles the MATLAB
file(s) you specify on the command line and, in addition, it compiles any other MATLAB
files that your MATLAB file(s) calls. MATLAB Compiler uses a dependency analysis,
which determines all the functions on which the supplied MATLAB files, MEX-files, and
P-files depend.

Note: If the MATLAB file associated with a p-file is unavailable, the dependency analysis
will not be able to discover the p-file’s dependencies.

The dependency analysis may not locate a function if the only place the function is called
in your MATLAB file is a call to the function either:

* In a callback string

+ In a string passed as an argument to the feval function or an ODE solver

Tip Dependent functions can also be hidden from the dependency analyzer in
-mat files that get loaded by compiled applications. Use the mcc -a argument or
the %#function pragma to identify .mat file classes or functions that should be
supported by the load command.

MATLAB Compiler does not look in these text strings for the names of functions to
compile.

Symptom

Your application runs, but an interactive user interface element, such as a push button,
does not work. The compiled application issues this error message:

An error occurred in the callback: change_colormap

17-3

http://www.mathworks.com/products/compiler/compiler_support.html
http://www.mathworks.com/products/compiler/compiler_support.html

] 7 Limitations and Restrictions

17-4

The error message caught was : Reference to unknown function
change_colormap from FEVAL in stand-alone mode.

Workaround

There are several ways to eliminate this error:

+ Using the %#function pragma and specifying callbacks as strings
+ Specifying callbacks with function handles
* Using the -a option

Specifying Callbacks as Strings

Create a list of all the functions that are specified only in callback strings and pass these
functions using separate %#function pragma statements. This overrides the product's
dependency analysis and instructs it to explicitly include the functions listed in the
%#Function pragmas.

For example, the call to the change_colormap function in the sample application,
my_test, illustrates this problem. To make sure MATLAB Compiler processes the
change_colormap MATLARB file, list the function name in the %#function pragma.

function my_test()
% Graphics library callback test application

%#Function change_colormap
peaks;

p_btn = uicontrol(gcf,...
"Style®, "pushbutton®,...
"Position®,[10 10 133 25], --.-
"String®, "Make Black & White", ...
"CallBack", "change_colormap®);

Specifying Callbacks with Function Handles

To specify the callbacks with function handles, use the same code as in the example
above and replace the last line with

"CallBack" ,@change_colormap);

For more information on specifying the value of a callback, see the MATLAB
Programming Fundamentals documentation.

MATLAB Compi|er Limitations

Using the -a Option

Instead of using the %#function pragma, you can specify the name of the missing
MATLAB file on the MATLAB Compiler command line using the -a option.

Finding Missing Functions in a MATLAB File

To find functions in your application that may need to be listed in a %#function
pragma, search your MATLAB file source code for text strings specified as callback
strings or as arguments to the feval, fminbnd, fminsearch, funm, and fzero
functions or any ODE solvers.

To find text strings used as callback strings, search for the characters “Callback” or
“fen” in your MATLAB file. This will find all the Call Ilback properties defined by
Handle Graphics objects, such as uicontrol and uimenu. In addition, this will find the
properties of figures and axes that end in Fcn, such as CloseRequestFcn, that also
support callbacks.

Suppressing Warnings on the UNIX System

Several warnings may appear when you run a standalone application on the UNIX
system. This section describes how to suppress these warnings.

To suppress the Iibjvm.so warning, make sure you set the dynamic library path
properly for your platform. See “MATLAB Runtime Path Settings for Run-time
Deployment” on page 18-4.

You can also use the MATLAB Compiler option -R —-nojvm to set your application's
nojvm run-time option, if the application is capable of running without Java.

Cannot Use Graphics with the -nojvm Option

If your program uses graphics and you compile with the —-nojvm option, you will get a
run-time error.

Cannot Create the Output File

If you receive the error

Can"t create the output file filename

17-5

] 7 Limitations and Restrictions

17-6

there are several possible causes to consider:
* Lack of write permission for the folder where MATLAB Compiler is attempting to
write the file (most likely the current working folder).

* Lack of free disk space in the folder where MATLAB Compiler is attempting to write
the file (most likely the current working folder).

+ If you are creating a standalone application and have been testing it, it is possible
that a process is running and is blocking MATLAB Compiler from overwriting it with
a new version.

No MATLAB File Help for Compiled Functions

If you create a MATLAB file with self-documenting online help by entering text on one
or more contiguous comment lines beginning with the second line of the file and then
compile it, the results of the command

help filename

will be unintelligible.

Note: Due to performance reasons, MATLAB file comments are stripped out before
MATLAB runtime encryption.

No MATLAB Runtime Versioning on Mac OS X

The feature that allows you to install multiple versions of the MATLAB runtime on the
same machine is currently not supported on Mac OS X. When you receive a new version
of MATLAB , you must recompile and redeploy all of your applications and components.
Also, when you install a new MATLAB runtime onto a target machine, you must delete
the old version of the MATLAB runtime and install the new one. You can only have one
version of the MATLAB runtime on the target machine.

Older Neural Networks Not Deployable with MATLAB Compiler

Loading networks saved from older Neural Network Toolbox versions requires some
initialization routines that are not deployable. Therefore, these networks cannot be
deployed without first being updated.

MATLAB Compi|er Limitations

For example, deploying with Neural Network Toolbox Version 5.0.1 (2006b) and
MATLAB Compiler Version 4.5 (R2006b) yields the following errors at run time:

??? Error using ==> network.subsasgn
"layers{1}.initFcn" cannot be set to non-existing
function "initwb".

Error in ==> updatenet at 40

Error in ==> network.loadobj at 10

??? Undefined function or method "sim® for input
arguments of type "struct".
Error in ==> mynetworkapp at 30

Restrictions on Calling PRINTDLG with Multiple Arguments in Compiled
Mode

In compiled mode, only one argument can be present in a call to the MATLAB printdlg
function (for example, printdlg(gc¥T)).

You will not receive an error when making at call to printdlg with multiple arguments.
However, when an application containing the multiple-argument call is compiled, the
compile will fail with the following error message:

Error using = => printdlg at 11
PRINTDLG requires exactly one argument

Compiling a Function with WHICH Does Not Search Current Working
Directory

Using which, as in this example:

function pathtest

which myFile.mat

open("myFile.mat")

does not cause the current working folder to be searched in deployed applications. In
addition, it may cause unpredictable behavior of the open function.

Use one of the following solutions as alternatives to using which:

+ Use the pwd function to explicitly point to the file in the current folder, as follows:

open([pwd "myFile.mat"])

17-7

] 7 Limitations and Restrictions

17-8

+ Rather than using the general open function, use load or other specialized functions
for your particular file type, as load explicitly checks for the file in the current folder.
For example:

load myFile.mat

* Include your file in the Files required for your application to run area of the
compiler app or the —a flag using mcc.

Restrictions on Using C++ SETDATA to Dynamically Resize an MWArray
You cannot use the C++ SETDATA function to dynamically resize MWArrays.

For instance, if you are working with the following array:
[12 3 4]

you cannot use SETDATA to increase the size of the array to a length of five elements.

Licensing Terms and Restrictions on Compiled Applications

Licensing Terms and Restrictions on Compiled Applications

Applications you build with a trial MATLAB Compiler license are valid for thirty (30)
days only.

Applications you build with a purchased license of MATLAB Compiler have no expiration
date.

17-9

] 7 Limitations and Restrictions

MATLAB Functions That Cannot Be Compiled

17-10

Note: Due to the number of active and ever-changing list of MathWorks products and
functions, this is not a complete list of functions that can not be compiled. If you have a
question as to whether a specific MathWorks product's function is able to be compiled
or not, the definitive source is that product's documentation, not the MATLAB Compiler
documentation.

Some functions are not supported in standalone mode; that is, you cannot compile them
with MATLAB Compiler. These functions are in the following categories:

* Functions that print or report MATLAB code from a function, for example, the
MATLAB help function or debug functions, will not work.
* Simulink® functions, in general, will not work.

* Functions that require a command line, for example, the MATLAB lookfor function,
will not work.

+ clc, home, and savepath will not do anything in deployed mode.
* Tools that allow run-time manipulation of figures

Returned values from standalone applications will be 0 for successful completion or a
nonzero value otherwise.

In addition, there are functions and programs that have been identified as nondeployable
due to licensing restrictions.

mccExcludedFiles. log lists all the functions and files excluded by mcc if they can not
be compiled. It is created after each attempted build if there are functions or files that
cannot be compiled.

List of Unsupported Functions and Programs

add_block
add_line
applescript
checkcode
close_system

MATLAB Functions That Cannot Be Compiled

colormapeditor
commandwindow
Control System Toolbox™ prescale GUI
createClassFromwsdl
dbclear

dbcont

dbdown

dbquit

dbstack
dbstatus
dbstep

dbstop

dbtype

dbup
delete_block
delete_line
depfun

doc

echo

edit

eval

fields
figure_palette
get_param

help

home

inmem

keyboard
linkdata

17-11

] 7 Limitations and Restrictions

17-12

1inmod
mislocked
mlock

more
munlock
new_system
open_system
pack

pcode
plotbrowser
plotedit
plottools
profile
profsave
propedit
propertyeditor
publish
rehash
restoredefaultpath
run

segment
set_param
sim

simget
simset
sldebug

type

Reference Information

“MATLAB Runtime Path Settings for Development and Testing” on page 18-2
“MATLAB Runtime Path Settings for Run-time Deployment” on page 18-4
“MATLAB Compiler Licensing” on page 18-6

“Deployment Product Terms” on page 18-8

] 8 Reference Information

MATLAB Runtime Path Settings for Development and Testing

18-2

In this section...

“Overview” on page 18-2

“Path for Java Development on All Platforms ” on page 18-2
“Path Modifications Required for Accessibility” on page 18-2
“Windows Settings for Development and Testing” on page 18-3
“Linux Settings for Development and Testing” on page 18-3

“Mac Settings for Development and Testing” on page 18-3

Overview

The following information is for developers developing applications that use compiled
MATLAB code. These settings are required on the machine where you are developing
your application.

Note: For matlabroot, substitute the MATLAB root folder on your system. Type
matlabroot to see this folder name.

Path for Java Development on All Platforms

There are additional requirements when programming in the Java programming
language.

Path Modifications Required for Accessibility

In order to use some screen-readers or assistive technologies, such as JAWS®, you must
add the following DLLs to your Windows path:

JavaAccessBridge.dll
WindowsAccessBridge.dll

You may not be able to use such technologies without doing so.

MATLAB Runtime Path Settings for Development and Testing

Windows Settings for Development and Testing

When programming with compiled MATLAB code, add the following folder to your
system PATH environment variable:

matlabroot\runtime\win32|win64

Linux Settings for Development and Testing

Add the following platform-specific folders to your dynamic library path.

Note For readability, the following commands appear on separate lines, but you must
enter each setenv command on one line.

setenv LD_LIBRARY_PATH
matlabroot/runtime/glnxa64:
matlabroot/bin/glnxa64:
matlabroot/sys/os/glnxa64:
mer_root/version/sys/opengl/lib/glnxa64

Mac Settings for Development and Testing

Add the following platform-specific folders to your dynamic library path.

Note For readability, the following commands appear on separate lines, but you must
enter each setenv command on one line.

setenv DYLD_LIBRARY_PATH
matlabroot/runtime/maci64:
matlabroot/bin/maci64:
matlabroot/sys/os/maci64:

18-3

] 8 Reference Information

MATLAB Runtime Path Settings for Run-time Deployment

18-4

In this section...

“General Path Guidelines” on page 18-4

“Path for Java Applications on All Platforms” on page 18-4
“Windows Path for Run-Time Deployment” on page 18-4
“Linux Paths for Run-Time Deployment” on page 18-5

“Mac Paths for Run-Time Deployment” on page 18-5

General Path Guidelines

Regardless of platform, be aware of the following guidelines with regards to placing
specific folders on the path:

+ Always avoid including bin or arch on the path. Failure to do so may inhibit ability
to run multiple MATLAB runtime instances.

+ Ideally, set the environment in a separate shell script to avoid run-time errors caused
by path-related issues.

Path for Java Applications on All Platforms

When your users run applications that contain compiled MATLAB code, you must
instruct them to set the path so that the system can find the MATLAB runtime.

Note: When you deploy a Java application to end users, they must set the class path on
the target machine.

The system needs to find . jar files containing the MATLAB libraries. To tell the system
how to locate the . jar files it needs, specify a classpath either in the javac command
or in your system environment variables.

Windows Path for Run-Time Deployment

The following folder should be added to the system path:

mer_root\version\runtime\win32|win64

MATLAB Runtime Path Settings for Run-time Deployment

mcr_root refers to the complete path where the MATLAB runtime library archive files
are installed on the machine where the application is to be run.

mcr_root is version specific; you must determine the path after you install the MATLAB
runtime.

Note: If you are running the MATLAB Runtime Installer on a shared folder, be aware
that other users of the share may need to alter their system configuration.

Linux Paths for Run-Time Deployment

Use these setenv commands to set your MATLAB runtime run-time paths.

setenv LD_LIBRARY_PATH
mer_root/version/runtime/glnxa64:
mer_root/version/bin/glnxa64:
mer_root/version/sys/os/glnxa64:
mer_root/version/sys/opengl/lib/glnxa64

Mac Paths for Run-Time Deployment

Use these setenv commands to set your MATLAB runtime run-time paths.

setenv DYLD_LIBRARY_PATH
mer_root/version/runtime/maci64:
mer_root/version/bin/maci64:
mer_root/version/sys/os/maci64:
mer_root/version/sys/java/jar/maci64/jre/lib/server

18-5

] 8 Reference Information

MATLAB Compiler Licensing

18-6

Using MATLAB Compiler Licenses for Development

You can run MATLAB Compiler from the MATLAB command prompt (MATLAB mode)
or the DOS/UNIX prompt (standalone mode).

MATLAB Compiler uses a lingering license. This means that when the MATLAB
Compiler license is checked out, a timer is started. When that timer reaches 30 minutes,
the license key is returned to the license pool. The license key will not be returned until
that 30 minutes is up, regardless of whether mcc has exited or not.

Each time a compiler command is issued, the timer is reset.
Running MATLAB Compiler in MATLAB Mode

When you run MATLAB Compiler from “inside” of the MATLAB environment, that is,
you run mcc from the MATLAB command prompt, you hold the MATLAB Compiler
license as long as MATLAB remains open. To give up the MATLAB Compiler license, exit
MATLAB.

Running MATLAB Compiler in Standalone Mode

If you run MATLAB Compiler from a DOS or UNIX prompt, you are running from
“outside” of MATLAB. In this case, MATLAB Compiler

* Does not require MATLAB to be running on the system where MATLAB Compiler is
running

* Gives the user a dedicated 30-minute time allotment during which the user has
complete ownership over a license to MATLAB Compiler

Each time a user requests MATLAB Compiler , the user begins a 30-minute time
period as the sole owner of the MATLAB Compiler license. Anytime during the 30-
minute segment, if the same user requests MATLAB Compiler , the user gets a new 30-
minute allotment. When the 30-minute interval has elapsed, if a different user requests
MATLAB Compiler , the new user gets the next 30-minute interval.

When a user requests MATLAB Compiler and a license is not available, the user receives
the message

Error: Could not check out a Compiler License.

MATLAB Compiler Licensing

This message is given when no licenses are available. As long as licenses are available,
the user gets the license and no message is displayed. The best way to guarantee that
all MATLAB Compiler users have constant access to MATLAB Compiler is to have an
adequate supply of licenses for your users.

18-7

] 8 Reference Information

Deployment Product Terms

18-8

A

Add-in — A Microsoft Excel add-in is an executable piece of code that can be actively
integrated into a Microsoft Excel application. Add-ins are front-ends for COM

components, usually written in some form of Microsoft Visual Basic”.

Application program interface (API) — A set of classes, methods, and interfaces that
1s used to develop software applications. Typically an API is used to provide access to
specific functionality. See MWArray.

Application — An end user-system into which a deployed functions or solution is
ultimately integrated. Typically, the end goal for the deployment customer is integration
of a deployed MATLAB function into a larger enterprise environment application.

The deployment products prepare the MATLAB function for integration by wrapping
MATLAB code with enterprise-compatible source code, such as C, C++, C# (NET), F#,
and Java code.

Assembly — An executable bundle of code, especially in .NET.
B

Binary — See Executable.

Boxed Types — Data types used to wrap opaque C structures.
Build — See Compile.

C

Class — A user-defined type used in C++, C#, and Java, among other object-oriented
languages, that is a prototype for an object in an object-oriented language. It is analogous
to a derived type in a procedural language. A class is a set of objects which share a
common structure and behavior. Classes relate in a class hierarchy. One class is a
specialization (a subclass) of another (one of its superclasses) or comprises other classes.
Some classes use other classes in a client-server relationship. Abstract classes have no
members, and concrete classes have one or more members. Differs from a MATLAB class

Compile — In MATLAB Compiler terminology, to compile MATLAB code involves
generating a binary that wraps around MATLAB code, enabling it to execute in various
computing environments. For example, when MATLAB code is compiled into a Java

Deployment Product Terms

package, a Java wrapper provides Java code that enables the MATLAB code to execute in
a Java environment.

COM component — In MATLAB Builder EX, the executable back-end code behind
a Microsoft Excel add-in. In MATLAB Builder NE, an executable component, to be
integrated with Microsoft COM applications.

Console application — Any application that is executed from a system command prompt
window.

D

Data Marshaling — Data conversion, usually from one type to another. Unless a
MATLAB deployment customer is using type-safe interfaces, data marshaling—as from
mathematical data types to MathWorks data types such as represented by the MWArray
API—must be performed manually, often at great cost.

Deploy — The act of integrating MATLAB code into a larger-scale computing
environment, usually to an enterprise application, and often to end users.

Deployable archive — The deployable archive is embedded by default in each generated
binary by MATLAB Compiler. It houses the deployable package. All MATLAB-based
content in the deployable archive uses the Advanced Encryption Standard (AES)
cryptosystem. See “Additional Details” in the MATLAB Compiler documentation.

DLL — Dynamic link library. Microsoft's implementation of the shared library concept
for Windows. Using DLLs is much preferred over the previous technology of static (or
non-dynamic) libraries, which had to be manually linked and updated.

E
Empties — Arrays of zero (0) dimensions.

Executable — An executable bundle of code, made up of binary bits (zeros and ones) and
sometimes called a binary.

F
Fields — For this definition in the context of MATLAB Data Structures, see Structs.

Fields and Properties — In the context of .NET, Fields are specialized classes used
to hold data. Properties allow users to access class variables as if they were accessing
member fields directly, while actually implementing that access through a class method.

18-9

] 8 Reference Information

I

Integration — Combining deployed MATLAB code's functionality with functionality
that currently exists in an enterprise application. For example, a customer creates a
mathematical model to forecast trends in certain commodities markets. In order to use
this model in a larger-scale financial application (one written with the Microsoft NET
Framework, for instance) the deployed financial model must be integrated with existing
C# applications, run in the .NET enterprise environment.

Instance — For the definition of this term in context of MATLAB Production Server
software, see MATLAB Production Server Server Instance.

J

JAR — Java archive. In computing software, a JAR file (or Java ARchive) aggregates
many files into one. Software developers use JARs to distribute Java applications or
libraries, in the form of classes and associated metadata and resources (text, images,
etc.). Computer users can create or extract JAR files using the jar command that comes
with a Java Development Kit (JDK).

Java-MATLAB Interface — Known as the JMI Interface, this is the Java interface built
into MATLAB software.

JDK — The Java Development Kit is a free Oracle® product which provides the
environment required for programming in Java.

JMI Interface — see Java-MATLAB Interface.

JRE — Java Run-Time Environment is the part of the Java Development Kit (JDK)
required to run Java programs. It comprises the Java Virtual Machine, the Java platform
core classes, and supporting files. It does not include the compiler, debugger, or other
tools present in the JDK. The JRE™ is the smallest set of executables and files that
constitute the standard Java platform.

M

Magic Square — A square array of integers arranged so that their sum is the same when
added vertically, horizontally, or diagonally.

MATLAB Runtime — An execution engine made up of the same shared libraries.
MATLAB uses these libraries to enable the execution of MATLAB files on systems
without an installed version of MATLAB.

18-10

Deployment Product Terms

MATLAB Runtime Singleton — See Shared MATLAB Runtime Instance.

MATLAB Runtime Workers — A MATLAB runtime session. Using MATLAB Production
Server software, you have the option of specifying more than one MATLAB runtime
session, using the ——num-workers options in the server configurations file.

MATLAB Production Server Client — In the MATLAB Production Server software,
clients are applications written in a language supported by MATLAB Production Server
that call deployed functions hosted on a server.

MATLAB Production Server Configuration — An instance of the MATLAB Production
Server containing at least one server and one client. Each configuration of the software
usually contains a unique set of values in the server configuration file, “main_config”.

MATLAB Production Server Server Instance — A logical server configuration created
using the mps-new command in MATLAB Production Server software.

MATLAB Production Server Software — Product for server/client deployment of
MATLAB programs within your production systems, enabling you to incorporate
numerical analytics in enterprise applications. When you use this software, Web,
database, and enterprise applications connect to MATLAB programs running on
MATLAB Production Server via a lightweight client library, isolating the MATLAB
programs from your production system. MATLAB Production Server software consists of
one or more servers and clients.

Marshaling — See Data Marshaling.

mbuild — MATLAB Compiler command that compiles and links C and C++ source files
into standalone applications or shared libraries. For more information, see the mbui ld
function reference page.

mcc — The MATLAB command that invokes MATLAB Compiler. It is the command-line
equivalent of using the compiler apps.

Method Atiribute — In the context of NET, a mechanism used to specify declarative
information to a .NET class. For example, in the context of client programming with
MATLAB Production Server software, you specify method attributes to define MATLAB
structures for input and output processing.

mxArray interface — The MATLAB data type containing all MATLAB representations of
standard mathematical data types.

18-11

] 8 Reference Information

18-12

MWArray interface — A proxy to mxArray. An application program interface (API) for
exchanging data between your application and MATLAB. Using MWArray, you marshal
data from traditional mathematical types to a form that can be processed and understood
by MATLAB data type mxArray. There are different implementations of the MWArray
proxy for each application programming language.

P

Package — The act of bundling the deployed MATLAB code, along with the MATLAB
runtime and other files, into an installer that can be distributed to others. The compiler
apps place the installer in the for_redistribution subfolder. In addition to the
installer, the compiler apps generate a number of lose artifacts that can be used for
testing or building a custom installer.

PID File — See Process Identification File (PID File).

Pool — A pool of threads, in the context of server management using MATLAB
Production Server software. Servers created with the software do not allocate a unique
thread to each client connection. Rather, when data is available on a connection, the
required processing is scheduled on a pool, or group, of available threads. The server
configuration file option —-—num-threads sets the size of that pool (the number of
available request-processing threads) in the master server process.

Process Identification File (PID File) — A file that documents informational and error
messages relating to a running server instance of MATLAB Production Server software.

Program — A bundle of code that is executed to achieve a purpose. Programs usually
are written to automate repetitive operations through computer processing. Enterprise
system applications usually consist of hundreds or even thousands of smaller programs.

Properties — For this definition in the context of .NET, see Fields and Properties.

Proxy — A software design pattern typically using a class, which functions as an
interface to something else. For example, MWArray is a proxy for programmers who need
to access the underlying type mxArray.

S
Server Instance — See MATLAB Production Server Server Instance.

Shared Library — Groups of files that reside in one space on disk or memory for fast
loading into Windows applications. Dynamic-link libraries (DLLs) are Microsoft's
implementation of the shared library concept in for Microsoft Windows.

Deployment Product Terms

Shared MATLAB Runtime Instance — When using MATLAB Builder NE or MATLAB
Builder JA, you can create a shared MATLAB runtime instance, also known as a
singleton. For builder NE, this only applies to COM components. When you invoke
MATLAB Compiler with the -S option through the builders (using either mcc or a
compiler app), a single MATLAB runtime instance is created for each COM component
or Java package in an application. You reuse this instance by sharing it among all
subsequent class instances. Such sharing results in more efficient memory usage and
eliminates the MATLAB runtime startup cost in each subsequent class instantiation.
All class instances share a single MATLAB workspace and share global variables in the
deployed MATLAB files. MATLAB Builder NE and MATLAB Builder EX are designed
to create singletons by default for .NET assemblies and COM components, respectively.
For more information, see “Sharing a MATLAB Runtime Instance in COM or Java
Applications”.

State — The present condition of a the MATLAB, or MATLAB runtime, runtime.
MATLAB functions often carry state in the form of variable values. The MATLAB
workspace itself also maintains information about global variables and path settings.
When deploying functions that carry state, you must often take additional steps to
ensure state retention when deploying applications that use such functions.

Structs — MATLAB Structures. Structs are MATLAB arrays with elements that you
access using textual field designators. Fields are data containers that store data of a
specific MATLAB type.

System Compiler — A key part of Interactive Development Environments (IDEs) such as
Microsoft Visual Studio.

T

Thread — A portion of a program that can run independently of and concurrently with
other portions of the program. See pool for additional information on managing the
number of processing threads available to a server instance.

Type-safe interface — An API that minimizes explicit type conversions by hiding the
MWArray type from the calling application.

A\

Web Application Archive (WAR) —In computing, a Web Application Archive is a JAR file
used to distribute a collection of JavaServer pages, servlets, Java classes, XML files, tag
libraries, and static Web pages (HTML and related files) that together constitute a Web
application.

18-13

] 8 Reference Information

18-14

Webfigure — A MathWorks representation of a MATLAB figure, rendered on the Web.
Using the WebFigures feature, you display MATLAB figures on a Web site for graphical
manipulation by end users. This enables them to use their graphical applications from
anywhere on the Web, without the need to download MATLAB or other tools that can
consume costly resources.

Windows Communication Foundation (WCF) — The Windows Communication
Foundation™ is an application programming interface in the .NET Framework for
building connected, service-oriented, Web-centric applications. WCF is designed in
accordance with service oriented architecture principles to support distributed computing
where services are consumed by client applications.

Functions — Alphabetical List

%#function
applicationCompiler
productionServerCompiler
ctfroot

deployprint

deploytool
figTolmStream
getmcruserdata
<library>Initialize[WithHandlers]
isdeployed

ismcc

libraryCompiler
matlab.mapreduce.DeployHadoopMapReducer
mapreducer
hadoopCompiler

mbuild

mcc
mclGetLastErrorMessage
mclGetLogFileName
mclInitializeApplication
mcllsJVMEnabled
mcllsMCRInitialized
mcllsNoDisplaySet
mclmerInitialize
mclRunMain
mclTerminateApplication
mclWaitForFiguresToDie
mcrinstaller

mcrversion
setmcruserdata
<library>Terminate

19 Functions — Alphabetical List

19-2

%#function

Pragma to help MATLAB Compiler locate functions called through feval, eval, or
Handle Graphics callback

Syntax

%#Function functioni [function2 ... functionN]

%#function object_constructor

Description

The %#function pragma informs MATLAB Compiler that the specified function(s) will
be called through an feval, eval, or Handle Graphics callback.

Use the %#function pragma in standalone applications to inform MATLAB Compiler
that the specified function(s) should be included in the compilation, whether or not
MATLAB Compiler's dependency analysis detects the function(s). It is also possible to
include objects by specifying the object constructor.

Without this pragma, the product's dependency analysis will not be able to locate and

compile all MATLAB files used in your application. This pragma adds the top-level
function as well as all the local functions in the file to the compilation.

Examples

Example 1

function foo
%#function bar

feval ("bar*®);

end %Ffunction foo

%#function

By implementing this example, MATLAB Compiler is notified that function bar will be
included in the compilation and is called through feval.
Example 2

Ffunction foo
%#function bar foobar

feval("bar™®);
feval (" foobar*);

end %Ffunction foo

In this example, multiple functions (bar and foobar) are included in the compilation
and are called through feval.

19-3

19 Functions — Alphabetical List

19-4

applicationCompiler

Build and package functions into standalone applications

Syntax

applicationCompiler

applicationCompiler project _name
applicationCompiler -build project_name
applicationCompiler -package project name

Description

applicationCompiler opens the MATLAB standalone compiler for the creation of a
new compiler project

applicationCompiler project name opens the MATLAB standalone compiler app
with the project preloaded.

applicationCompiler -build project name runs the MATLAB standalone
compiler to build the specified project. The installer is not generated.

applicationCompiler -package project name runs the MATLAB standalone
compiler to build and package the specified project. The installer is generated.

Examples

Create a New Standalone Application Project

Open the application compiler to create a new project.

applicationCompliler
Package a Standalone Application using an Existing Project

Open the application compiler to build a new application using an existing project.

applicationCompiler

applicationCompliler -package my magic

Input Arguments

project_name — name of the project to be compiled
string

Specify the name of a previously saved MATLAB Compiler project. The project must be
on the current path.

See Also

deploytool | mcc

19-5

19 Functions — Alphabetical List

19-6

productionServerCompiler

Build and package functions for use with MATLAB Production Server

Syntax

productionServerCompiler
productionServerCompiler project_name
productionServerCompiler -build project _name
productionServerCompiler -package project _name

Description

productionServerCompi ler opens the MATLAB compiler for the creation of a new
compiler project

productionServerCompiler project_name opens the MATLAB compiler with the
project preloaded.

productionServerCompiler -build project_name runs the MATLAB compiler to
build the specified project. The installer is not generated.

productionServerCompiler -package project_name runs the MATLAB compiler
to build and package the specified project. The installer is generated.

Examples

Create a New Production Server Project

Open the production server compiler to create a new project.

productionServerCompliler
Package a Deployable Archive using an Existing Project

Open the production server compiler to package a deployable archive using an existing
project file.

productionServerCompiler

productionServerCompliler -package my magic

Input Arguments

project_name — name of the project to be compiled
string

Specify the name of a previously saved MATLAB Compiler project. The project must be
on the current path.

19-7

19 Functions — Alphabetical List

19-8

ctfroot

Location of files related to deployed application

Syntax

ctfroot

Description

root = ctfroot returns a string that is the name of the folder where the deployable
archive for the deployed application is expanded.

This function differs from matlabroot, which returns the path to where core MATLAB
functions and libraries are located. matlabroot returns the root directory of the
MATLAB runtime when run against an installed MATLAB runtime.

To determine the location of various toolbox folders in deployed mode, use the
toolboxdir function.

Examples

appRoot = ctfroot; will return the location of your deployed application files in this
form: application_name_mcr.

Use this function to access any file that the user would have included in their project
(excluding the ones in the packaging folder).

More About

. “Deployable Archive” on page 7-6

deployprint

deployprint

Use to print to a printer when working with deployed Windows applications

Syntax

deployprint

Description

In cases where the print command would normally be issued when running MATLAB
software, use deployprint when working with deployed applications.

deployprint is available on all platforms, however it is only required on Windows.

deployprint supports all of the input arguments supported by print except for the
following.

Argument Description

-d Used to specify the type of the output (for
example. .JPG, .BMP, etc.). deployprint only
produces .BMP files.

Note: To print to a file, use the print function.

-noui Used to suppress printing of user interface controls. Similar
to use in MATLAB print function.

-setup The -setup option is not supported.

-s windowtitle MATLAB Compiler does not support Simulink.

deployprint supports a subset of the figure properties supported by print. The
following are supported:

+ PaperPosition
+ PaperSize

19-9

19 Functions — Alphabetical List

+ PaperUnits
+ Orientation
* PrintHeader

Note: deployprint requires write access to the file system in order to write temporary
files.

Examples

The following is a simple example of how to print a figure in your application, regardless
of whether the application has been deployed or not:

figure;
plot(1:10);
it isdeployed
deployprint;
else
print(gcft);
end

See Also
isdeployed

19-10

deploytool

deploytool

Compile and package functions for external deployment

Syntax

deploytool

deploytool project name
deploytool -build project _name
deploytool -package project _name

Description
deploytool opens the MATLAB Compiler app.

deploytool project_name opens the MATLAB Compiler app with the project
preloaded.

deploytool -build project name runs the MATLAB Compiler to build the specified
project. The installer is not generated.

deploytool -package project_name runs the MATLAB Compiler to build and
package the specified project. The installer is generated.

Examples

Create a New Compiler Project

Open the compiler to create a new project.

deploytool
Package an Application using an Existing Project

Open the compiler to build a new application using an existing project.

19-11

19 Functions — Alphabetical List

deploytool -package my_magic

Input Arguments

project_name — name of the project to be compiled
string

Specify the name of a previously saved MATLAB Compiler project. The project must be
on the current path.

19-12

figTolmStream

figTolmStream

Stream out figure as byte array encoded in format specified, creating signed byte array in
-png format

Syntax

output type = FTigTolmStream ("fighandle®, figure handle,
"imageFormat®, image format, “outputType®, output type)

Description

The output type = FigTolmStream ("fighandle®, figure handle,
"imageFormat®, image format, “outputType®, output type) command also
accepts user-defined variables for any of the input arguments, passed as a comma-
separated list

The size and position of the printed output depends on the figure's
PaperPosition[mode] properties.

Options

figTolmStream(" figHandle®, Figure Handle, ...) allows you to specify the
figure output to be used. The Default is the current image

figTolmStream(" imageFormat®, [pngljpglbmp]gif]) allows you to specify the
converted image format. Default value is png.

figTolmStream("outputType™, [int8!luint8]) allows you to specify an output
byte data type. uint8 (unsigned byte) is used primarily for .NET primitive byte. Default
value is uint8.

Examples

Convert the current figure to a signed png byte array:

19-13

19 Functions — Alphabetical List

surf(peaks)
bytes = figTolmStream

Convert a specific figure to an unsigned bmp byte array:

T = figure;

surf(peaks);

bytes = figTolmStream(“figHandle", T, -
"imageFormat®, “bmp-,
“outputType®™, “uint8");

19-14

getmcruserdata

getmcruserdata

Retrieve MATLAB array value associated with given string key

Syntax

function value = getmcruserdata(key)

Description

The function _value = getmcruserdata(key) command is partofthe MATLAB
runtime User Data interface API. It returns an empty matrix if no such key exists. For

information about this function, as well as complete examples of usage, see “Using the
MATLAB Runtime User Data Interface” on page 11-30.

Examples

function_value =
getmcruserdata("ParallelProfile”);

See Also

setmcruserdata

19-15

19 Functions — Alphabetical List

19-16

<library>Initialize[WithHandlers]

Initialize MATLAB runtime instance associated with 1ibrary

Syntax

bool Iibrarylnitialize(void)

bool IibrarylnitializeWithHandlers(
mclOutputHandlerFcn error_handler,
mclOutputHandlerFcn print_handler)

Description

Each generated library has its own MATLAB runtime instance. These two functions,
librarylnitialize and librarylnitializeWithHandlers initialize the MATLAB
runtime instance associated with I1ibrary. Users must call one of these functions

after calling mcl InitializeApplication and before calling any of the compiled
functions exported by the library. Each returns a boolean indicating whether or not
initialization was successful. If they return false, calling any further compiled functions
will result in unpredictable behavior. IibrarylnitializeWithHandlers allows

users to specify how to handle error messages and printed text. The functions passed to
librarylnitializeWithHandlers will be installed in the MATLAB runtime instance
and called whenever error text or regular text is to be output.

Examples
if (Mlibmatrixlnitialize())
fprintf(stderr,
“An error occurred while initializing: \n %s 7,

mclGetLastErrorMessage());
return -2;

More About

. “Library Initialization and Termination Functions” on page 15-20

<library>Initialize]WithHandlers]

See Also

<library>Terminate

19-17

19 Functions — Alphabetical List

19-18

isdeployed

Determine whether code is running in deployed or MATLAB mode

Syntax

x = isdeployed

Description

X = isdeployed returns true (1) when the function is running in deployed mode and
false (0) if it is running in a MATLAB session.

If you include this function in an application and compile the application with MATLAB
Compiler, the function will return true when the application is run in deployed mode. If
you run the application containing this function in a MATLAB session, the function will
return false.

ismcc

Ismcc

Test if code is running during compilation process (using mcc)

X = Ismcc
Description
X = ismcc returns true when the function is being executed by mcc dependency checker

and false otherwise.

When this function is executed by the compilation process started by mcc, it will return
true. This function will return false when executed within MATLAB as well as in
deployed mode. To test for deployed mode execution, use isdeployed. This function
should be used to guard code in matlabrc, or hgrc (or any function called within them,
for example startup.m in the example on this page), from being executed by MATLAB
Compiler (mcc) or any of the Builder products.

In a typical example, a user has ADDPATH calls in their MATLAB code. These can be
guarded from executing using I1smcc during the compilation process and isdeployed for
the deployed application as shown in the example on this page.

Examples

“% startup.m
if ~(ismcc || isdeployed)
addpath(fullfile(matlabroot, "work®));
end

See Also

isdeployed | mcc

19-19

19 Functions — Alphabetical List

19-20

libraryCompiler

Build and package functions for use in external applications

Syntax

libraryCompiler

libraryCompiler project_name
libraryCompiler -build project_name
libraryCompiler -package project name

Description

libraryCompiler opens the MATLAB shared library compiler for the creation of a new
compiler project

libraryCompiler project_name opens the MATLAB shared library compiler app
with the project preloaded.

libraryCompiler -build project_name runs the MATLAB shared library compiler
to build the specified project. The installer is not generated.

libraryCompiler -package project_name runs the MATLAB shared library
compiler to build and package the specified project. The installer is generated.

Examples

Create a New Project

Open the library compiler to create a new project.

libraryCompliler
Package a Function using an Existing Project

Open the library compiler using an existing project.

libraryCompiler

libraryCompliler -package my magic

Input Arguments

project_name — name of the project to be compiled
string

Specify the name of a previously saved MATLAB Compiler project. The project must be
on the current path.

19-21

19 Functions — Alphabetical List

19-22

matlab.mapreduce.DeployHadoopMapReducer class

Package: matlab.mapreduce

Configure a MapReduce application for deployment against Hadoop

Description

MapReducer object that represents executing MapReduce on a Hadoop cluster with a
deployed MATLAB runtime.

Construction

config = matlab._mapreduce.DeployHadoopMapReducer creates a
matlab.mapreduce .DeployHadoopMapReducer object that specifies the default
properties for Hadoop execution.

Use the resulting object as input to the “mapreducer” function, to specify the
configuration properties for Hadoop execution. For deploying a standalone application,
pass the matlab_mapreduce .DeployHadoopMapReducer object as input to
mapreduce.

config = matlab.mapreduce.DeployHadoopMapReducer (Name,Value) creates a
matlab._mapreduce.DeployHadoopMapReducer object with properties specified by one
or more name-value pair arguments.

Input Arguments
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the
argument name and Value is the corresponding value. Name must appear inside single
quotes (*). You can specify several name and value pair arguments in any order as
Namel,Valuel, ... ,NameN,ValueN.

Example: "MCRRoot", */hd-shared/hadoop-2.2.0/MCR/v84~

"HadooplInstalIFolder® — Path to Hadoop installation
character string

matlab.mapreduce. DeployHadoopMapReducer class

Path to Hadoop installation, specified as the comma-separated pair consisting of the
Hadooplnstal IFolder and a character string.

The default value of Hadoop install folder is specified by the environment variables in the
order of precedence of MATLAB_HADOOP__INSTALL, HADOOP_PREFIX, and HADOOP_HOME.

"HadoopConfigurationFile" — Path to Hadoop application configuration files
character string

Path to Hadoop application configuration files, specified as the comma-separated pair
consisting of the HadoopConfigurationFile and a character string.

"MCRRoot" — MATLAB runtime install folder for Hadoop cluster
character string

MATLAB runtime install folder for Hadoop cluster, specified as the comma-separated
pair consisting of the MCRRoot and a character string.

MCRRoot specifies the MATLAB runtime install folder used by Hadoop when executing
mapreduce tasks in Hadoop.

"HadoopProperties™ — Map container of name-value pairs
character string | cell array of strings

Map container of name-value pairs, specified as the comma-separated pair consisting of
the HadoopProperties and a character string or a cell array of strings.

Map container values are passed as inputs to the Hadoop command.

Properties

HadoopInstallFolder — Path to Hadoop installation
character string

Path to Hadoop installation, specified as a character string.

HadoopConfigurationFile — Path to Hadoop application configuration files
character string

Path to Hadoop application configuration files, specified as a character string.

19-23

19 Functions — Alphabetical List

MCRRoot — MATLAB runtime install folder for Hadoop cluster
character string

MATLAB runtime install folder for Hadoop cluster, specified as a character string.

MCRRoot specifies the MATLAB runtime install folder used by Hadoop when executing
mapreduce tasks in Hadoop.

HadoopProperties — Map container of name-value pairs
character string | cell array of strings

Map container of name-value pairs, specified as a character string or a cell array of
strings.

Map container values are passed as inputs to the Hadoop command.

Examples

Create a Deploy Hadoop MapReducer object

Create and use a matlab._mapreduce .DeployHadoopMapReducer object to deploy into
a standalone application and deploy against Hadoop.

config = matlab.mapreduce.DeployHadoopMapReducer (*MCRRoot" , */hd-shared/hadoop-2.2.0/MCl
mr = mapreducer(config);

. “Create Standalone Application to Run Against Hadoop Using mcc”

See Also

mapreduce | mapreducer

19-24

mapreducer

mapreducer

Define deployed execution environment for MapReduce

Use this function with MATLAB Compiler to specify information about the execution
environment for standalone applications that execute against Hadoop.

Syntax

mapreducer (config)
mr = mapreducer(config)

Description

mapreducer (confiQ) specifies execution environment. When deploying
a standalone application against Hadoop, config is an object of
matlab.mapreduce .DeployHadoopMapReducer class.

mr = mapreducer(config) returns a MapReducer object to specify the execution
environment. You can define MapReducer objects, allowing you to swap execution
environments by passing one as an input argument to mapreduce.

Examples
. “Create Standalone Application to Run Against Hadoop Using mcc”

Input Arguments

config — mapreducer object for running in deployed environment
matlab.mapreduce.DeployHadoopMapReducer object

mapreducer object for running in deployed environment, specified as a
matlab._mapreduce.DeployHadoopMapReducer object.

Example: config =
mapreducer(matlab.mapreduce.DeployHadoopMapReducer (*MCRRoot", "/hd-
shared/hadoop-2.2.0/MCR/v84%))

19-25

19 Functions — Alphabetical List

19-26

Output Arguments

mr — Execution environment for MapReduce
MapReducer object

Execution environment for mapreduce, returned as a MapReducer object.

More About
Tips

+ mapreducer and mapreducer(0) enables different configurations based on the
products you have. In MATLAB, the mapreduce function automatically runs using a
SerialMapReducer. For more information, see mapreducer.

If you have Parallel Computing Toolbox, see the function reference page for
mapreducer for additional information.

See Also

Functions
gcmr | mapreduce

Classes
matlab_mapreduce .DeployHadoopMapReducer

hadoopCompiler

hadoopCompiler

Build and package MapReduce applications for deployment against Hadoop

Syntax

hadoopCompiler
hadoopCompiler project name

Description
hadoopCompi ler opens the Hadoop compiler app

hadoopCompiler project_name opens the MATLAB compiler with the project
preloaded.

Examples

Create a New Hadoop Compiler Project

Open the Hadoop compiler app to create a new project.

hadoopCompiler

Input Arguments

project_name — name of the project to be compiled
string

Specify the name of a previously saved MATLAB Compiler project. The project must be
on the current path.

See Also

deploytool | mcc

19-27

19 Functions — Alphabetical List

19-28

mbuild

Compile and link source files against MATLAB generated shared libraries

Syntax

mbuild [optioni1 ... optionN] sourcefilel [... sourcefileN]
[objectfilel ... objectfileN] [libraryfilel ... libraryfileN]
Description

mbui Id compiles and links customer written C or C++ code against MATLAB generated
shared libraries.

Some of these options (-F, —g, and -v) are available on the mcc command line and are
passed along to mbui Id. Others can be passed along using the -M option to mcc. For
details on the -M option, see the mcc reference page.

Supported Source File Types

Supported types of source files are:

*c .C
* -Cpp

Sourece files that are not one of the supported types are pass ed to the linker.

Options

This table lists the set of mbui Id options. If no platform is listed, the option is available
on both UNIX and Windows.

Option Description

@<rspfile> (Windows only) Include the contents of the text file
<rspfile> as command line arguments to mbui ld.

mbuild

Option Description

-<arch> Build an output file for architecture —<arch>. To
determine the value for -<arch>, type computer
("arch®) at the MATLAB Command Prompt on the target
machine. Note: Valid values for —<arch> depend on the
architecture of the build platform.

-C Compile only. Creates an object file only.

-D<name> Define a symbol name to the C preprocessor. Equivalent to

a #define <name> directive in the source.

-D<name>=<value>

Define a symbol name and value to the C preprocessor.
Equivalent to a #define <name> <value> directive in
the source.

-f <optionsfile>

Specify location and name of options file to use. Overrides
the mbui Id default options file search mechanism.

-9

Create an executable containing additional symbolic
information for use in debugging. This option disables the
mbui Id default behavior of optimizing built object code (see
the -0 option).

-h[elp]

Print help for mbui Id.

-I<pathname>

Add <pathname> to the list of folders to search for
#include files.

-I<name>

Link with object library. On Windows systems, <name>
expands to <name>_.lib or lib<name>_lib and on UNIX
systems, to 1 ib<name>_so or lib<name>_dylib. Do not
add a space after this switch.

Note: When linking with a library, it is essential that you
first specify the path (with - I<pathname>, for example).

-L<folder>

Add <folder> to the list of folders to search for libraries
specified with the -1 option. On UNIX systems, you must
also set the run-time library path, as explained in “Build

Your Application on Mac or Linux ” on page B-9. Do

not add a space after this switch.

19-29

19 Functions — Alphabetical List

Option Description

-n No execute mode. Print out any commands that mbui Id
would otherwise have executed, but do not actually execute
any of them.

-0 Optimize the object code. Optimization is enabled by

default and by including this option on the command line. If
the -g option appears without the -0 option, optimization
is disabled.

-outdir <dirname>

Place all output files in folder <dirname>.

-output <resultname>

Create an executable named <resultname>. An
appropriate executable extension is automatically
appended. Overrides the mbui Id default executable
naming mechanism.

-setup

Interactively specify the C/C++ compiler options file

to use as the default for future invocations of mbuild

by placing it in the user profile folder (returned by the
prefdir command). When this option is specified, no other
command line input is accepted.

-setup -client
mbui ld_com

Interactively specify the COM compiler options file to

use as the default for future invocations of mbui Id by
placing it in the user profile folder (returned by the
prefdir command). When this option is specified, no other
command line input is accepted.

-U<name> Remove any initial definition of the C preprocessor symbol
<name>. (Inverse of the -D option.)
-V Verbose mode. Print the values for important internal

variables after the options file is processed and all
command line arguments are considered. Prints each
compile step and final link step fully evaluated.

19-30

mbuild

Option

Description

<name>=<value>

Supplement or override an options file variable for variable
<name>. This option is processed after the options file is
processed and all command line arguments are considered.
You may need to use the shell's quoting syntax to protect
characters such as spaces that have a meaning in the

shell syntax. On Windows double quotes are used (e.g.,
COMPFLAGS=""optl opt2"), and on UNIX single quotes
are used (e.g., CFLAGS="optl opt2").

It is common to use this option to supplement a variable
already defined. To do this, refer to the variable by
prepending a $ (e.g., COMPFLAGS=""$COMPFLAGS opt2" on
Windows or CFLAGS="$CFLAGS opt2" on UNIX shell).

Examples

To change the default C/C++ compiler for use with MATLAB Compiler, use

mbuild -setup

To compile and link an external C program foo.c against 11bfoo, use

mbuild foo.c -L. -I1foo (on UNIX)
mbuild foo.c libfoo.lib (on Windows)

This assumes both Foo.c and the library generated above are in the current working

folder.

19-31

19 Functions — Alphabetical List

19-32

mcc

Compile MATLAB functions for deployment

Syntax

mcc -e | -m [-a filename...] [-B filename [:arg..]] [-C] [-d outFolder] [-f filename] [-
gl [-Idirectory...] [-K] [-M string] [-N] [-o filename] [-p path...] [[Roption] [-v] [w
option [:msqg]] [-Y filename] mfilename

mcc -1 [-a filename...] [-B filename [:arg...]] [-C] [-d outFolder] [-f filename] [-g]
[-Idirectory..] [-(K] [-M string] [-N] [-o filename] [-p path...] [[Roption] [-v] [w
option [:msqg]] [-Y filename] mfilename...

mcc -c [-a filename...] [-B filename [:arg...]] [-C] [-d outFolder] [-f filename] [-g]
[[Idirectory..] [-(K] [-M string] [-N] [-o filename] [-p path...] [Roption] [-v] [w
option [:msqg]] [-Y filename] mfilename...

mcc -W cpplib:1ibrary name -T link:lib [-a filename...] [-B filename [:arg...]] [-C] [-d
outFolder] [-f filename] [-g] [-[1directory...] [-K] [-M string] [-N] [-o filename] [-p
path...] [[Roption] [-S] [-v] [-w option [:msg]] [-Y filename] mfilename...

mcc -W dotnet:assembly name, [className], [framework version], security,
remote_type -T link:lib [-a filename...] [-B filename [:arg...]] [-C] [-d outFolder] [-
ffilename] [-1directory..] [-K] [-M string] [-N] [-p path...] [[R option] [-S] [-v] [-w
option [:msqg]] [-Y filename] mfilename... [class{className: [mfilename...]}...]

mcc -W excel:addin_name, [className], [version] -T link:lib [-a filename...] [-b]

[-B filename [:arg...]] [-C] [-d outFolder] [-f filename] [-[1directory...] [-K] [-

M string] [-N] [-p path...] [[R option] [-u] [-v] [-w option [:msg]] [[Y filename]
mfilename...

mcc -W 'java:packageName, [className]' [-a filename..]] [-b] [-B filename [:arg...]]
[-C] [-d outFolder] [-f filename] [-[1 directory..] [-K] [-M string] [-N] [-p path...] [-
Roption] [-S] [-v] [-woption [:msg]] [-Y filenamem] filename... [class{className:
[mfilename..]}...]

mcc -W CTF:archive name [-a filename...] [-b] [-B filename [:arg...]] [-d outFolder]
[-f filename] [-1directory..] [-K] [[M string] [-N] [-p path...] [[R option] [-S] [-v] [-
woption [:msgl] [-[Y filenamem] filename... [class{className: [mfilename...]}...]
mcc -W mpsxl:archive name, [className], [version] -T link:lib [-
replaceBlankWithNaN] [-convertDateToString] [-replaceNaNWithZero] [-
convertNumericToDate] [-a filename...] [-b] [-B filename [:arg...]] [-d outFolder] [-f
filename] [-Idirectory..] [-K] [-M string] [-N] [-p path...] [[Roption] [-S] [-v] [-w
option [:msqg]] [-Y filenamem] filename... [class{className: [mfilename...]}...]

mcc

mcc -H -W mpsxl:archive name, [className], [version] -T link:lib [-
replaceBlankWithNaN] [-convertDateToString] [-replaceNaNWithZero] [-
convertNumericToDate] [-a filename...] [-b] [-B filename [:arg...]] [-d outFolder] [-f
filename] [-Idirectory..] [-K] [-M string] [-N] [-p path...] [-R option] [-S] [-v] [-wW
option [:msqg]] [-Y filenamem] filename... [class{className: [mfilename...]}...]
mcc -H -W hadoop:archive name,CONFIG:configFile [-a filename...] [-b] [-B
filename [:arg...]] [-d outFolder] [-f filename] [-[1directory...] [-K] [[M string]
[-N] [-p path...] [[Roption] [-S] [-v] [-w option [:msg]] [-Y filenamem] filename...
[class{className: [mfilename...]}...]

mcc -?

Description
mcc -m mfilename compiles the function into a standalone application.
This is equivalent to -W main -T link:exe.

mcc -e mFilename compiles the function into a standalone application that does not
open an MS-DOS® command window.

This is equivalent to -W WinMain -T link:exe.

mcc -1 mfilename. .. compiles the listed functions into a C shared library and
generates C wrapper code for integration with other applications.

This is equivalent to -W lib:Iibname -T link:lib.
mcc -c mfilename. .. generates C wrapper code for the listed functions.
This is equivalent to -W lib:1ibname -T codegen.

mcc -W cpplib:library_name -T link:lib mFfilename. .. compiles the listed
functions into a C++ shared library and generates C++ wrapper code for integration with
other applications.

mcc -W dotnet:assembly name,className, framework version,security,
remote_type -T link:lib mFilename. .. creates a .NET assembly from the
specified files.

+ assembly name — Specifies the name of the assembly and its namespace, which is a
period-separated list, such as companyname .groupname .component.

19-33

19 Functions — Alphabetical List

19-34

className — Specifies the name of the .NET class to be created.

framework version — Specifies the version of the Microsoft NET Framework you
want to use to compile the assembly. Specify either:

* 0.0 — Use the latest supported version on the target machine.

version_major.version_minor — Use a specific version of the framework.

Features are often version-specific. Consult the documentation for the feature you are
implementing to get the Microsoft .NET Framework version requirements.

security — Specifies whether the assembly to be created is a private assembly or a
shared assembly.
To create a private assembly, specify Private.

To create a shared assembly, specify the full path to the encryption key file used to
sign the assembly.

remote_type — Specifies the remoting type of the assembly. Values are remote and
local.

By default, the compiler generates a single class with a method for each function
specified on the command line. You can instruct the compiler to create multiple classes
using class{className:mfilename...}. ... className specifies the name of the
class to create using mfilename.

mcc -W excel:addin_name,className,version -T link:lib mfilename...
creates a Microsoft Excel add-in from the specified files.

addin_name — Specifies the name of the addin and its namespace, which is a period-
separated list, such as companyname . groupname . component.

className — Specifies the name of the class to be created. If you do not specify the
class name, mcc uses the addin_name as the default.

version — Specifies the version of the add-in specified as major.minor.
major — Specifies the major version number. If you do not specify a version
number, mcc uses the latest version.

+ minor — Specifies the minor version number. If you do not specify a version
number, mcc uses the latest version.

mcc -W "java:packageName,className®™ mfilename.. . creates a Java package
from the specified files.

mcc

packageName — Specifies the name of the Java package and its namespace, which is
a period-separated list, such as companyname . groupname . component.

className — Specifies the name of the class to be created. If you do not specify the
class name, mcc uses the last item in packageName.

By default, the compiler generates a single class with a method for each function
specified on the command line. You can instruct the compiler to create multiple classes
using class{className:mfilename...}. ... className specifies the name of the
class to create using mfilename.

mcc -W CTF:archive_ name instructs the compiler to create a deployable archive that
is deployable in a MATLAB Production Server instance.

mcc -W mpsxl:addin_name,className,version input_marshalling_options
output_marshalling options -T link:lib mFfilename. .. creates an MATLAB
Production Server integrated Microsoft Excel add-in from the specified files.

addin_name — Specifies the name of the add-in and its namespace, which is a
period-separated list, such as companyname .groupname .component.

className — Specifies the name of the class to be created. If you do not specify the
class name, mcc uses the addin_name as the default.

version — Specifies the version of the add-in specified as major.minor.
+ major — Specifies the major version number. If you do not specify a version
number, mcc uses the latest version.

minor — Specifies the minor version number. If you do not specify a version
number, mcc uses the latest version.

input _marshalling flags — Specifies options for how data is marshaled between

Microsoft Excel and MATLAB.

+ -replaceBlankWithNaN — Specifies that blanks in Microsoft Excel are mashaled
into MATLAB NaNs. If you do not specify this flag, blanks are marshaled as 0.

—-convertDateToString — Specifies that dates in Microsoft Excel are mashaled

into MATLAB strings. If you do not specify this flag, dates are marshaled as
MATLAB doubles.

output _marshaling flags — Specifies options for how data is marshaled between
MATLAB and Microsoft Excel.

19-35

19 Functions — Alphabetical List

19-36

+ -replaceNaNWithZero — Specifies that MATLAB NaNs are marsheled into
Microsoft Excel Os . If you do not specify this flag, NaNs are marshaled as Visual
Basic #QNANs.

+ —convertNumericToDate — Specifies that MATLAB numeric values are
marsheled into Microsoft Excel dates. If you do not specify this flag, Microsoft
Excel does not receive dates as output.

mcc -H -W hadoop:archiveName,CONFIG:configFile generates deployable archive
that can be run as a job by Hadoop.

* archiveName — Specifies the name of the generated archive.

+ configFile — Specifies the path to the Hadoop settings file. See “Hadoop Settings
File”.

mcc -7 displays help.

Tip You can issue the mcc command either from the MATLAB command prompt or the
DOS or UNIX command line.

Options

-a Add to Archive

Add a file to the deployable archive using

-a Filename

to specify a file to be directly added to the deployable archive. Multiple -a options are
permitted. MATLAB Compiler looks for these files on the MATLAB path, so specifying
the full path name is optional. These files are not passed to mbui ld, so you can include
files such as data files.

If only a folder name is included with the -a option, the entire contents of that folder are
added recursively to the deployable archive. For example:

mcc -m hello.m -a ./testdir

mcc

In this example, testdir is a folder in the current working folder. All files in testdir,
as well as all files in subfolders of testdir, are added to the deployable archive, and the
folder subtree in testdir is preserved in the deployable archive.

If a wildcard pattern is included in the file name, only the files in the folder that match
the pattern are added to the deployable archive and subfolders of the given path are not
processed recursively. For example:

mcc -m hello.m -a ./testdir/*

In this example, all files in ./testdir are added to the deployable archive and
subfolders under ./testdir are not processed recursively.

mcc -m hello.m -a ./testdir/*.m

In this example, all files with the extension .m under ./testdir are added to the
deployable archive and subfolders of ./testdir are not processed recursively.

All files added to the deployable archive using —a (including those that match a

wildcard pattern or appear under a folder specified using —a) that do not appear on the
MATLAB path at the time of compilation causes a path entry to be added to the deployed
application's run-time path so that they appear on the path when the deployed code
executes.

When files are included, the absolute path for the DLL and header files is changed. The
files are placed in the .\exe_mcr\ folder when the deployable archive is expanded. The
file is not placed in the local folder. This folder is created from the deployable archive the
first time the application is executed. The isdeployed function is provided to help you
accommodate this difference in deployed mode.

The -a switch also creates a .auth file for authorization purposes. It ensures that the
executable looks for the DLL- and H-files in the exe_mcr\exe folder.

Caution If you use the -a flag to include a file that is not on the MATLAB path, the folder
containing the file is added to the MATLAB dependency analysis path. As a result, other
files from that folder might be included in the compiled application.

Note: Currently, * is the only supported wildcard.

19-37

19 Functions — Alphabetical List

19-38

Note: If the -a flag is used to include custom Java classes, standalone applications work
without any need to change the classpath as long as the Java class is not a member of
a package. The same applies for JAR files. However, if the class being added is a member
of a package, the MATLAB code needs to make an appropriate call to Javaaddpath to
update the classpath with the parent folder of the package.

-b Generate Excel Compatible Formula Function

Generate a Visual Basic file (.bas) containing the Microsoft Excel Formula Function
interface to the COM object generated by MATLAB Compiler. When imported into the
workbook Visual Basic code, this code allows the MATLAB function to be seen as a cell
formula function. This option requires MATLAB Builder EX.

-B Specify Bundle File

Replace the file on the mcc command line with the contents of the specified file. Use
-B filename[:<al>,<a2>,...,<an>]

The bundle file i lename should contain only mcc command-line options and
corresponding arguments and/or other file names. The file might contain other -B
options. A bundle file can include replacement parameters for Compiler options that

accept names and version numbers. See “Using Bundle Files to Build MATLAB Code” for
a list of the bundle files included with MATLAB Compiler.

-C Do Not Embed Deployable Archive by Default

Override automatically embedding the deployable archive in C/C++ and main/Winmain
shared libraries and standalone binaries by default.

-d Specified Folder for Output

Place output in a specified folder. Use

-d outFolder

to direct the generated files to outFolder.

mcc

-e Suppress MS-DOS Command Window

Suppress appearance of the MS-DOS command window when generating a standalone
application. Use —e in place of the -m option. This option is available for Windows only.
Use with -R option to generate error logging as such:

mcc -e -R -logfile -R *"filename®™ -v function_name
or:
mcc -e -R "-logfile,logfilename® -v function_name

For example, to build a standalone from function foo.m that suppresses the MS-DOS
command window, and specifying error logging to a text file, enter this command:

mcc -e -R "-logfile,errorlog.txt" -v foo.m

-f Specified Options File
Override the default options file with the specified options file. Use
- filename

to specify Filename as the options file when calling mbui Id. This option lets you use
different ANSI compilers for different invocations of MATLAB Compiler. This option is a
direct pass-through to mbuild.

-g Generate Debugging Information

Include debugging symbol information for the C/C++ code generated by MATLAB
Compiler. It also causes mbui Id to pass appropriate debugging flags to the system C/C
++ compiler. The debug option lets you backtrace up to the point where you can identify
if the failure occurred in the initialization of MATLAB runtime, the function call, or the
termination routine. This option does not let you debug your MATLAB files with a C/C++
debugger.

-G Debug Only

Same as -g.

19-39

19 Functions — Alphabetical List

-1 Add Folder to Include Path

Add a new folder path to the list of included folders. Each -1 option adds a folder to the
beginning of the list of paths to search. For example,

-1 <directoryl> -1 <directory2>

sets up the search path so that directoryl is searched first for MATLAB files, followed
by directory?2. This option is important for standalone compilation where the MATLAB
path is not available.

-K Preserve Partial Output Files

Direct mcc to not delete output files if the compilation ends prematurely, due to error.
The default behavior of mcc is to dispose of any partial output if the command fails to
execute successfully.

-m Generate a Standalone Application

Macro to produce a standalone application. This macro is equivalent to the defunct:
-W main -T link:exe

Use the -e option instead of the -m option to generate a standalone application while
suppressing the appearance of the MS-DOS command window.

Note: Using the —e option requires the application to successfully compile with a
Microsoft compiler.

-M Direct Pass Through
Define compile-time options. Use
-M string

to pass string directly to mbui Id. This provides a useful mechanism for defining
compile-time options, e.g., -M ""-Dmacro=value"'.

Note: Multiple —-M options do not accumulate; only the rightmost —-M option is used.

19-40

mcc

-N Clear Path

Passing -N effectively clears the path of all folders except the following core folders (this
list is subject to change over time):

+ matlabroot\toolbox\matlab

* matlabroot\toolbox\local

+ matlabroot\toolbox\compiler\deploy

It also retains all subfolders of the above list that appear on the MATLAB path at
compile time. Including -N on the command line lets you replace folders from the original
path, while retaining the relative ordering of the included folders. All subfolders of

the included folders that appear on the original path are also included. In addition,

the —N option retains all folders that you included on the path that are not under
matlabroot\toolbox.

-0 Specify Output Name

Specify the name of the final executable (standalone applications only). Use

-0 outputfile

to name the final executable output of MATLAB Compiler. A suitable, possibly platform-
dependent, extension is added to the specified name (e.g., -exe for Windows standalone
applications).

-p Add Folder to Path

Use in conjunction with the required option -N to add specific folders (and subfolders)
under matlabroot\toolbox to the compilation MATLAB path in an order sensitive
way. Use the syntax

-N -p directory

where directory is the folder to be included. If directory is not an absolute path, it
is assumed to be under the current working folder. The rules for how these folders are
included follow.

+ If a folder is included with -p that is on the original MATLAB path, the folder and all
its subfolders that appear on the original path are added to the compilation path in an
order-sensitive context.

1941

19 Functions — Alphabetical List

19-42

+ If a folder is included with —-p that is not on the original MATLAB path, that folder is
not included in the compilation. (You can use -1 to add it.)

If a path i1s added with the —1 option while this feature is active (-N has been passed) and
it is already on the MATLAB path, it is added in the order-sensitive context as if it were
included with -p. Otherwise, the folder is added to the head of the path, as it normally
would be with -1.

-R Run-Time

Provides MATLAB runtime run-time options. The syntax is as follows:
-R option

Option Description

- Specify a log file name.
logfile, filenan

-nodisplay Suppress the MATLAB nodisplay run-time warning.
-nojvm Do not use the Java Virtual Machine (JVM).
-startmsg Customizable user message displayed at initialization time.

-completemsg Customizable user message displayed when initialization is
complete.

Note: Not all -R options are available for all mcc targets.

Caution When running on Mac OS X, if -nodisplay is used as one of
the options included in mclInitializeApplication, then the call to
mclInitializeApplication must occur before calling mclRunMain.

-S Create Singleton MATLAB Runtime Context

The standard behavior for the MATLAB runtime is that every instance of a class gets

its own runtime context. This runtime context includes a global MATLAB workspace

for variables such as the path and a base workspace for each function in the class. If
multiple instances of a class are created, each instance gets an independent context. This

mcc

ensures that changes made to the global, or base, workspace in one instance of the class
does not effect other instances of the same class.

In a singleton MATLAB runtime, all instances of a class share the runtime context. If
multiple instances of a class are created, the use the runtime context created by the

first instance. This saves start up time and some resources. However, any changes made
to the global workspace or the base workspace by one instance impacts all of the class
instances. For example, if instancel creates a global variable A in a singleton MATLAB
runtime, the instance2 will be able to use variable A.

-T Specify Target Stage
Specify the output target phase and type.

Use the syntax -T target to define the output type. Target values are as follow.

Target Description

compile:exe Generate a C/C++ wrapper file plus compile
C/C++ files to object form suitable for
linking into a standalone application.

compile:lib Generate a C/C++ wrapper file plus compile
C/C++ files to object form suitable for
linking into a shared library/DLL.

link:exe Same as compi le:exe plus links object
files into a standalone application.

link:lib Same as compile: lib plus links object
files into a shared library/DLL.

-u Register COM Component for the Current User

Register COM component for the current user only on the development machine. The
argument applies only for generic COM component and Microsoft Excel add-in targets
only.

-v Verbose

Display the compilation steps, including:

19-43

19 Functions — Alphabetical List

19-44

* MATLAB Compiler version number
* The source file names as they are processed
* The names of the generated output files as they are created

* The invocation of mbui ld

The -V option passes the —v option to mbui ld and displays information about mbui ld.

-w Warning Messages
Display warning messages. Use the syntax
-w option [:<msg>]

to control the display of warnings. This table lists the syntaxes.

Syntax Description

-w list Generate a table that maps <string> to warning
message for use with enable, disable, and error.
“Warning Messages”, lists the same information.

-w enable Enable complete warnings.

-w disable[:<string>] Disable specific warnings associated with <string>.
“Warning Messages”, lists the <string> values. Omit
the optional <string> to apply the disable action to
all warnings.

-w enable[:<string>] Enable specific warnings associated with <string>.
“Warning Messages”, lists the <string> values. Omit
the optional <string> to apply the enable action to
all warnings.

-w error[:<string>] Treat specific warnings associated with <string> as
an error. Omit the optional <string> to apply the
error action to all warnings.

-w off[:<string>] Turn warnings off for specific error messages defined

[<filename>] by <string>. You can also narrow scope by specifying
warnings be turned off when generated by specific
<filename>s.

mcc

Syntax Description

-w on[:<string>] Turn warnings on for specific error messages defined

[<filename>] by <string>. You can also narrow scope by specifying
warnings be turned on when generated by specific
<filename>s.

It is also possible to turn warnings on or off in your MATLAB code.

For example, to turn warnings off for deployed applications (specified using
isdeployed) in your startup.m, you write:

if isdeployed
warning off
end

To turn warnings on for deployed applications, you write:

it isdeployed
warning on
end

-Y License File

Use

-Y license.lic

to override the default license file with the specified argument.

19-45

19 Functions — Alphabetical List

mclGetlLastErrorMessage

Last error message from unsuccessful function call

Syntax

const char* mclGetLastErrorMessage()

Description

This function returns a function error message (usually in the form of false or -1).

Example

char *args[] = { "-nodisplay" };
if(ImclinitializeApplication(args, 1))

{
fprintf(stderr,
“An error occurred while initializing: \n %s 7,
mclGetLastErrorMessage());
return -1;
¥
See Also

mclInitializeApplication | mclTerminateApplication |
<library>Initialize[WithHandlers] | <library>Terminate

19-46

mclGetLogFileName

mclGetlogFileName

Retrieve name of log file used by MATLAB runtime

Syntax

const char* mclGetLogFileName()

Description
Use mclGetLogFileName() to retrieve the name of the log file used by the MATLAB

runtime. Returns a character string representing log file name used by MATLAB
runtime. For more information, see “MATLAB Runtime Startup Options” on page 11-27.

Examples

printf(""Logfile name : %s\n",mclGetLogFileName());

19-47

19 Functions — Alphabetical List

19-48

mclInitializeApplication

Set up application state shared by all (future) MATLAB runtime instances created in
current process

Syntax

bool
mclInitializeApplication(const char **options, int count)

Description

MATLAB Compiler-generated standalone executables contain auto-generated code to
call this function; users of shared libraries must call this function manually. Call only
once per process. The function takes an array of strings (possibly of zero length) and a
count containing the size of the string array. The string array may contain the following
MATLAB command line switches, which have the same meaning as they do when used in

MATLAB. :

+ -appendlogfile
+ -Automation

+ -beginfile

+ -debug
+ -defer
+ -display

+ -Embedding
+ -endfile

+ -fork

+ —java

+ -jdb

+ -logfile

* —minimize
+ -MLAutomation

mclinitializeApplication

+ -noaccel

+ -nodisplay

* -noFigureWindows
* -nojit

* -nojvm

+ -noshelldde

+ -nosplash

s -r

* -Regserver

+ -shelldde

+ -singleCompThread
+ -student

* -Unregserver

+ -useJavaFigures
+ -mwvisual

* =Xrm

Caution mclInitializeApplication must be called once only per process. Calling
mclInitializeApplication more than once may cause your application to exhibit
unpredictable or undesirable behavior.

Caution When running on Mac, if -nodisplay is used as one of the options included in
mclInitializeApplication, then the call to mclInitializeApplication must
occur before calling mclRunMain.

Examples

To start all MATLAB runtimes in a given process with the -nodisplay option, for
example, use the following code:

const char *args[] = { "-nodisplay" };
if (! mclinitializeApplication(args, 1))

19-49

19 Functions — Alphabetical List

{
fprintf(stderr,
“An error occurred while initializing: \n %s 7,
mclGetLastErrorMessage());
return -1;
¥

More About

. “Initializing and Terminating Your Application with mclInitializeApplication and
mclTerminateApplication” on page 15-3

See Also

mclTerminateApplication

19-50

mcllsJ)VMEnabled

mcllsJVMEnabled

Determine if MATLAB runtime was launched with instance of Java Virtual Machine
(JVM)

Syntax

bool mclIsJVMEnabled()

Description
Use mcl1sJVMEnabled() to determine if the MATLAB runtime was launched with
an instance of a Java Virtual Machine (JVM). Returns true if MATLAB runtime is

launched with a JVM instance, else returns false. For more information, see “MATLAB
Runtime Startup Options” on page 11-27.

Examples

printf("JVM initialized : %d\n", mcllsJVMEnabled()):

19-51

19 Functions — Alphabetical List

19-52

mcllsMCRInitialized

Determine if MATLAB runtime has been properly initialized

Syntax

bool mclIsMCRInitialized()

Description

Use mclIsMCRInitialized() to determine whether or not the MATLAB runtime has
been properly initialized. Returns

true if MATLAB runtime is already initialized
false if the MATLAB runtime is not initialized

For more information, see “M ATLAB Runtime Startup Options” on page 11-27.

Note: This method can only be called once the MATLAB runtime’s proxy library has been
initiated.

Examples

printfF(""MCR initialized : %d\n", mclIsMCRInitialized());

mcllsNoDisplaySet

mcllsNoDisplaySet

Determine if -nodisplay mode is enabled

Syntax

bool mcllIsNoDisplaySet()

Description

Use mclIsNoDisplaySet() to determine if —-nodisplay mode is enabled. Returns
true if -nodisplay is enabled, else returns false. For more information, see
“MATLAB Runtime Startup Options” on page 11-27 in the User's Guide.

Note: Always returns false on Windows systems since the ~nodisplay option is not
supported on Windows systems.

Examples

printf('nodisplay set : %d\n",mcllsNoDisplaySet());

19-53

19 Functions — Alphabetical List

mcimcrinitialize

Initializes the MATLAB runtime proxy library

Syntax

mclmcrinitialize();

Description

mclmerlnitialize is called before any other MATLAB APIs. It initializes the library used
to create the MATLAB runtime proxy used by all other MATLAB generated APIs.

See Also

mclInitializeApplication

19-54

mclRunMain

mclRunMain

Mechanism for creating identical wrapper code across all compiler platform
environments

Syntax
typedef int (*mclIMainFcnType)(int, const char **);
int mclRunMain(mclMainFcnType run_main,
int argc,
const char **argv)
run_main
Name of function to execute after MATLAB runtime set-up code.
argc

Number of arguments being passed to run_main function. Usually, argc is received by
application at its main function.

argv

Pointer to an array of character pointers. Usually, argv is received by application at its
main function.

Description

As you need to provide wrapper code when creating an application which uses a C or
C++ shared library created by MATLAB Compiler, mcIRunMain enables you with a
mechanism for creating identical wrapper code across all MATLAB Compiler platform
environments.

mclRunMain is especially helpful in Macintosh OS X environments where a run loop
must be created for correct MATLAB runtime operation.

When an OS X run loop is started, if mclInitializeApplication specifies the -nojvm
or -nodisplay option, creating a run loop is a straight-forward process. Otherwise, you

19-55

19 Functions — Alphabetical List

19-56

must create a Cocoa framework. The Cocoa frameworks consist of libraries, APIs, and
Runtimes that form the development layer for all of Mac OS X.

Generally, the function pointed to by run_main returns with a pointer (return value)
to the code that invoked it. When using Cocoa on the Macintosh, however, when the
function pointed to by run_main returns, the MATLAB runtime calls exit before the
return value can be received by the application, due to the inability of the underlying
code to get control when Cocoa is shut down.

Caution You should not use mclRunMain if your application brings up its own full
graphical environment.

Note: In non-Macintosh environments, mcIRunMain acts as a wrapper and doesn’t
perform any significant processing.

Examples

Call using this basic structure:

int returncode = O;

mclInitializeApplication(NULL,0);

returncode = mclRunMain((mclmainFcn)
my_main_Ffunction,0,NULL);

See Also

mcllnitializeApplication

mclTerminateApplication

mclTerminateApplication

Close down all MATLAB runtime-internal application state

Syntax

bool mclTerminateApplication(void)

Description

Call this function once at the end of your program to close down all MATLAB runtime-
internal application state. Call only once per process. After you have called this function,
you cannot call any further MATLAB Compiler-generated functions or any functions in
any MATLAB library.

Caution mclTerminateApplication must be called once only per process. Calling
mclTerminateApplication more than once may cause your application to exhibit
unpredictable or undesirable behavior.

Caution mclTerminateApplication will close any visible or invisible figures
before exiting. If you have visible figures that you would like to wait for, use
mclWaitForFiguresToDie.

Examples

At the start of your program, call nclInitializeApplication to ensure your library
was properly initialized:

mclInitializeApplication(NULL,0);
if (Mlibmatrixlnitialize()){
fprintf(stderr,
“An error occurred while initializing: \n %s 7,
mclGetLastErrorMessage());
return -1;

19-57

19 Functions — Alphabetical List

At your program's exit point, call nclTerminateApplication to properly shut the
application down:

mxDestroyArray(inl); inl1=0;
mxDestroyArray(in2); in2 = 0O;

mclTerminateApplication();
return O;

More About

. “Initializing and Terminating Your Application with mcllnitializeApplication and
mclTerminateApplication” on page 15-3

See Also

mclInitializeApplication

19-58

mclWaitForFiguresToDie

mclWaitForFiguresToDie

Enable deployed applications to process Handle Graphics events, enabling figure
windows to remain displayed

Syntax

void mclWaitForFiguresToDie(HMCRINSTANCE instReserved)

Description

Calling void mclWaitForFiguresToDie enables the deployed application to process
Handle Graphics events.

NULL is the only parameter accepted for the MATLAB runtime instance (HMCRINSTANCE
instReserved).

This function can only be called after Iibrarylnitialize has been called and before
libraryTerminate has been called

mcIWaitForFiguresToDie blocks all open figures. This function runs until no visible
figures remain. At that point, it displays a warning if there are invisible figures present.
This function returns only when the last figure window is manually closed — therefore,
this function should be called after the library launches at least one figure window. This
function may be called multiple times.

If this function is not called, any figure windows initially displayed by the application
briefly appear, and then the application exits.

Note: mclWaitForFiguresToDie will block the calling program only for MATLAB
figures. It will not block any Java GUIs, ActiveX controls, and other non-MATLAB GUIs
unless they are embedded in a MATLAB figure window.

Examples

int run_main(int argc, const char** argv)

{

int some_variable = 0;

19-59

19 Functions — Alphabetical List

19-60

if (argc > 1)

test_to_run = atoi(argv[1l]);

/* Initialize application */

if('mclinitializeApplication(NULL,0))

fprintf(stderr,
“An error occurred while

}

initializing: \n %s

mclGetLastErrorMessage());
return -1;

if (test_to_run ==

{

1 |] test_to_run

/* Initialize axlks library */
if (Mlibaxlkslinitialize())

}
}

fprintf(stderr,
“An error occurred while

initializing: \n %s

mclGetLastErrorMessage());

return -1;

if (test_to_run ==

{

2]| test_to_run

/* Initialize simple library */
if (Mlibsimplelnitialize())

}
}

/*
/*
/*
/*

fprintf(stderr,
“An error occurred while

initializing: \n %s

mclGetLastErrorMessage());

return -1;

your
your
your
your

code
code
code
code

here
here
here
here

0)

0)

mclWaitForFiguresToDie

/*
/* Block on open figures */
mclWaitForFiguresToDie(NULL);
/* Terminate libraries */
if (test_to _run == 1 || test_to_run == 0)
libaxlksTerminate();
if (test_to_run == 2 || test_to_run == 0)
libsimpleTerminate();
/* Terminate application */
mclTerminateApplication();
return(0);

More About

. “Terminating Figures by Force In a Standalone Application”

19-61

19 Functions — Alphabetical List

19-62

mcrinstaller

Display version and location information for MATLAB runtime installer corresponding to
current platform

Syntax

[INSTALLER PATH, MAJOR, MINOR, PLATFORM, LIST] = mcrinstaller;

Description

Displays information about available MATLAB runtime installers using the format:
[INSTALLER PATH, MAJOR, MINOR, PLATFORM, LIST] = mcrinstaller; where:
* INSTALLER PATH is the full path to the installer for the current platform.

* MAJOR is the major version number of the installer.

* MINOR is the minor version number of the installer.

* PLATFORM is the name of the current platform (returned by COMPUTER(arch)).

* LIST is a cell array of strings containing the full paths to MATLAB runtime installers
for other platforms. This list is non-empty only in a multi-platform MATLAB
installation.

Note: You must distribute the MATLAB runtime library to your end users to enable
them to run applications developed with MATLAB Compiler. Prebuilt MATLAB runtime
installers for all licensed platforms ship with MATLAB Compiler.

See “Working with the MATLAB Runtime” on page 11-13 for more information about the
MATLAB runtime installer.

mcrinstaller

Examples

Find MATLAB Runtime Installer Locations

Display locations of MATLAB Runtime Installers for platform. This example shows
output for a win64 system.

mcrinstaller

The WIN64 MCR Installer, version 7.16, is:
X:\jobx\clusterc\current\matlab\toolbox\compiler\
deploy\win64\MCRInstal ler.exe

MCR installers for other platforms are located in:
X:\jobx\clusterc\current\matlab\toolbox\compiler\
deploy\win64
win64 is the value of COMPUTER(win64) on
the target machine.

For more information, read your local MCR Installer help.
Or see the online documentation at MathWorks®" web site. (Page
may load slowly.)

ans =

X:z\jobx\clusterc\current\matlab\toolbox\compiler\
deploy\win64\MCRInstaller._exe

19-63

19 Functions — Alphabetical List

19-64

mcrversion

Determine version of installed MATLAB runtime

Syntax

[major, minor] = mcrversion;

Description

The MATLAB runtime version number consists of two digits, separated by a decimal
point. This function returns each digit as a separate output variable: [major, minor]
= mcrversion; Major and minor are returned as integers.

If the version number ever increases to three or more digits, call mcrversion with more
outputs, as follows:

[major, minor, point] = mcrversion;
At this time, all outputs past “minor” are returned as zeros.

Typing only mcrversion will return the major version number only.

Examples

mcrversion
ans =
7

setmcruserdata

setmcruserdata

Associate MATLAB data value with string key

Syntax

function setmcruserdata(key, value)

Description

The function setmcruserdata(key, value) command is part of the MATLAB
Runtime User Data interface API. For information about this function, as well as
complete examples of usage, see “Using the MATLAB Runtime User Data Interface” on
page 11-30.

Examples

In C++:

mxArray *key = mxCreateString("'ParallelProfile™);
mxArray *value = mxCreateString(""\usr\userdir\config.settings');
if (Isetmcruserdata(key, value))

fprintf(stderr,
“Could not set MCR user data: \n %s 77,
mclGetLastErrorMessage());

return -1;

¥
In C:

mxArray *key = mxCreateString("'ParallelProfile’);
mxArray *value = mxCreateString(""\usr\userdir\config.settings');
if (ImlfSetmcruserdata(key, value))
{
fprintf(stderr,
“Coulld not set MCR user data: \n %s ”°,
mclGetLastErrorMessage());

19-65

19 Functions — Alphabetical List

return -1;

}

See Also

getmcruserdata

19-66

<library>Terminate

<library>Terminate

Free all resources allocated by MATLAB runtime instance associated with 1ibrary

Syntax

void libraryTerminate(void)

Description

This function should be called after you finish calling the functions in this MATLAB
Compiler-generated library, but before mclTerminateApplication is called.

Examples

Call libmatrixInitialize to initialize 1 ibmatrix library properly near the start of
your program:

/* Call the library intialization routine and ensure the
* library was initialized properly. */
if (Mlibmatrixlnitialize())

{
fprintf(stderr,
“An error occurred while initializing: \n %s 7,
mclGetLastErrorMessage());
return -2;
¥
else

Near the end of your program (but before calling mclTerminateApplication)
free resources allocated by the MATLAB runtime instance associated with library
libmatrix:

/* Call the library termination routine */
libmatrixTerminate();

/* Free the memory created */
mxDestroyArray(inl); inl=0;

19-67

19 Functions — Alphabetical List

mxDestroyArray(in2); in2 = 0;
}

More About

. “Library Initialization and Termination Functions” on page 15-20

See Also

<library>Initialize[WithHandlers]

19-68

MATLAB Compiler Quick Reference

A Common Uses of MATLAB Compiler

Common Uses of MATLAB Compiler

In this section...

“Create a Standalone Application” on page A-2

“Create a Library” on page A-2

Create a Standalone Application

Example 1

To create a standalone application from mymFile.m, use
mcc -m mymfile

Example 2

To create a standalone application from mymFile.m, look for mymFile.m in the folder /
Files/source, and put the resulting C files and in /files/target, use

mcc -m -1 /Ffiles/source -d /files/target mymfile
Example 3

To create a standalone application mymFilel from mymFilel.m and mymFile2.m using
a single mcc call, use

mcc -m mymFilel mymfFile2

Create a Library
Example 1

To create a C shared library from foo.m, use

mcc -1 foo.m
Example 2

To create a C shared library called library_one from fool.m and foo2.m, use

mcc -W lib:library_one -T link:lib fool foo2

Common Uses of MATLAB Compiler

Note You can add the —g option to any of these for debugging purposes.

A

mcc Command Arguments Listed Alphabetically

mcc Command Arguments Listed Alphabetically

Bold entries in the Comment column indicate default values.

Option

Description

Comment

-a filename

Add Filename to the
deployable archive.

None

filename[:arg[,arg]

mcc command line with the
contents of i lename.

-b Generate Excel compatible Requires MATLAB Builder EX
formula function.
-B Replace -B Filename on the |The file should contain only mcc

command-line options. These are
MathWorks included options files:

+ -B csharedlib:foo — C shared
library

+ -B cpplib:foo— C++ library

deployable archive in C/C+
+ and main/Winmain shared
libraries and standalone
binaries by default.

-C Generate C wrapper code. Equivalent to
-T codegen
-C Directs mcc to not embed the |See “MATLAB Runtime Component

Cache and Deployable Archive
Embedding” on page 13-10 for more
information.

-d directory

Place output in specified
folder.

None

=3

Suppresses appearance of the
MS-DOS Command Window
when generating a standalone
application.

Use -e in place of the -m option.
Available for Windows only. Use with
-R option to generate error logging.
Equivalent to -W WinMain -T
link:exe

The standalone app compiler suppresses
the MS-DOS command window by
default. To unsuppress it, unselect Do
not require Windows Command Shell
(console) for execution in the app’s
Additional Runtime Settings area.

A4

mcc Command Arguments Listed Alphabetically

Option

Description

Comment

-f filename

Use the specified options
file, ¥i lename, when calling
mbui ld.

mbui ld -setup is recommended.

-g Generate debugging None
information.
-G Same as -9 None

-1 directory

Add folder to search path for
MATLARB files.

MATLAB path is automatically included
when running from MATLAB, but not
when running from a DOS/UNIX shell.

-K Directs mcc to not delete mcc's default behavior is to dispose of any
output files if the compilation |partial output if the command fails to
ends prematurely, due to execute successfully.
error.

-1 Macro to create a function Equivalent to
library. -W Iib -T link:lib

-m Macro to generate a Equivalent to
standalone application. -W main -T link:exe

-M string Pass string to mbui ld. Use to define compile-time options.

-N Clear the path of all but None

a minimal, required set of
folders.

-0 outputfile

Specify name of final output
file.

Adds appropriate extension

-p directory

Add directory to
compilation path in an order-
sensitive context.

Requires -N option

-Roption

Specify run-time options for
MATLAB runtime.

option =
-nojvm
-nodisplay
-logfile filename
-startmsg
-completemsg filename

A

mcc Command Arguments Listed Alphabetically

Option Description Comment

-S Create Singleton MATLAB For COM components only. Requires
runtime. MATLAB Builder NE or MATLAB

Builder EX.

-u Registers COM component Valid only for generic COM components
for current user only on and Microsoft Excel add-ins (requiring
development machine MATLAB Builder EX)

-T Specify the output target Default is codegen.
phase and type.

-V Verbose; display compilation |None
steps.

-w option Display warning messages. option=1list

level

level:string

where Ievel = disable
enable
error
error

[off:string | on:string]

-W type Control the generation of type =main

function wrappers. cpplib:<string>
lib:<string>
none
com:compname,clname,version

-Y licensefile Use licensefile when None
checking out a MATLAB
Compiler license.

-? Display help message. None

mcc Command Line Arguments Grouped by Task

mcc Command Line Arguments Grouped by Task

Bold entries in the Comment column indicate default values.

COM Components

Option Description Comment

-u Registers COM component |Valid only for generic COM
for current user only on components and Microsoft
development machine Excel add-ins (requiring

MATLAB Builder EX)

Deployable Archive

Option Description Comment

-a filename Add Filename to the None
deployable archive.

-C Directs mcc to not embed See “MATLAB Runtime
the deployable archive in Component Cache and
C/C++ and main/Winmain |Deployable Archive
shared libraries and Embedding” on page 13-10
standalone binaries by for more information.
default.

Debugging

Option Description Comment

-g Generate debugging None
information.

-G Same as -g None

-K Directs mcc to not mcc's default behavior is
delete output files if to dispose of any partial
the compilation ends output if the command fails
prematurely, due to error. |to execute successfully.

-V Verbose; display None
compilation steps.

-W type Control the generation of type =main
function wrappers. cpplib:<string>

A e Command Line Arguments Grouped by Task

Option Description Comment
lib:<string>
none
com:compname,
clname,version
-? Display help message. None
Dependency Function Processing
Option Description Comment
-a filename Add Filename to the None
deployable archive.
Licenses
Option Description Comment
-Y licensefile Use licensefile when None
checking out a MATLAB
Compiler license.
MATLAB Builder EX
Option Description Comment
-b Generate Excel compatible |Requires MATLAB Builder
formula function. EX

-u Registers COM component
for current user only on
development machine

Valid only for generic COM
components and Microsoft
Excel add-ins (requiring

for MATLAB files.

MATLAB Builder EX)
MATLAB Path
Option Description Comment
-1 directory Add folder to search path MATLAB path is

automatically included when
running from MATLAB, but
not when running from a
DOS/UNIX shell.

mcc Command Line Arguments Grouped by Task

Option

Description

Comment

Clear the path of all but
a minimal, required set of
folders.

None

-p directory

Add directory to
compilation path in an
order-sensitive context.

Requires -N option

mbuild

Option

Description

Comment

-f filename

Use the specified options
file, ¥i lename, when
calling mbui 1d.

mbuild -setup is
recommended.

filename[:arg[,arg]]

the mcc command line with
the contents of Filename
(bundle).

-M string Pass string to mbui ld. Use to define compile-time
options.
MATLABRuntime
Option Description Comment
-Roption Specify run-time options for [option =
MATLAB runtime. -nojvm
-nodisplay
-logfile
filename
-startmsg
-completemsg
filename
-S Create Singleton MATLAB |Requires MATLAB Builder
runtime. NE
Override Default Inputs
Option Description Comment
-B Replace -B Filename on |The file should contain only

mcc command-line options.
These are MathWorks
included options files:

A e Command Line Arguments Grouped by Task

Option Description Comment
* -B csharedlib:foo —
C shared library
+ -B cpplib:foo— C++
library
Override Default Outputs
Option Description Comment
-d directory Place output in specified None

folder.

-0 outputfile

Specify name of final output
file.

Adds appropriate extension

-

Suppresses appearance of
the MS-DOS Command
Window when generating a
standalone application.

Use -e in place of the -

m option. Available for
Windows only. Use with -
R option to generate error
logging. Equivalent to -W
WinMain -T link:exe

The standalone app compiler
suppresses the MS-DOS
command window by default.
To unsuppress it, unselect
Do not require Windows
Command Shell (console)
for execution in the app’s
Additional Runtime
Settings area.

Wrappers and Libraries

Option

Description

Comment

-C

Generate C wrapper code.

Equivalent to
-T codegen

Macro to create a function
library.

Equivalent to
-W Llib -T link:lib

A-10

mcc Command Line Arguments Grouped by Task

Option Description Comment
-m Macro to generate a Equivalent to
standalone application. -W main -T link:exe
-W type Control the generation of type =main
function wrappers. cpplib:<string>
lib:<string>
none
com:Icompname,
clname,version

A-11

A

Accepted File Types

Accepted File Types

A-12

The valid and invalid file types are as follows:

Target | Valid File Types Invalid File Types

Applicatio

Standalof MATLAB Mex files, MATLAB scripts, | MATLAB class files, PCode, Java

Applicatiland MATLAB functions. These files |functions, COM or .NET components,
must have a single entry point. and data files

Library |MATLAB Mex files andMATLAB MATLAB scripts, MATLAB class files,

Compiler|functions. These files must have a PCode, Java functions, COM or .NET
single entry point. components, and data files

MATLABMATLAB Mex files andMATLAB MATLAB scripts, MATLAB class files,

Productiq functions. These files must have a PCode, Java functions, COM or .NET

Server |[single entry point. components, and data files

Using MATLAB Compiler on Mac or Linux

B install MATLAB Compiler on Mac or Linux

Install MATLAB Compiler on Mac or Linux

In this section...

“Installing MATLAB Compiler” on page B-2
“Custom Configuring Your Options File” on page B-2
“Install Apple Xcode from DVD on Maci64” on page B-2

Installing MATLAB Compiler

See “Supported ANSI C and C++ UNIX Compilers” for general installation instructions
and information about supported compilers.

Custom Configuring Your Options File

To modify the current linker settings, or disable a particular set of warnings, locate your
options file for your “UNIX Operating System”, and view instructions for “Changing the
Options File”.

Install Apple Xcode from DVD on Macié4

When installing on 64-bit Macintosh systems, install the Apple Xcode from the
installation DVD.

Write Applications for Mac or Linux

Write Applications for Mac or Linux

In this section...
“Objective-C/C++ Applications for Apple’s Cocoa API” on page B-3
“Where’s the Example Code?” on page B-3

“Preparing Your Apple Xcode Development Environment” on page B-3

“Build and Run the Sierpinski Application” on page B-4

“Running the Sierpinski Application” on page B-5

Objective-C/C++ Applications for Apple’s Cocoa API

Apple Xcode, implemented in the Objective-C language, is used to develop applications
using the Cocoa framework, the native object-oriented API for the Mac OS X operating
system.

This article details how to deploy a graphical MATLAB application with Objective C and
Cocoa, and then deploy it using MATLAB Compiler.

Where's the Example Code?

You can find example Apple Xcode, header, and project files in matlabroot/extern/
examples/compiler/xcode.

Preparing Your Apple Xcode Development Environment

To run this example, you should have prior experience with the Apple Xcode development
environment and the Cocoa framework.

The example in this article is ready to build and run. However, before you build and run
your own applications, you must do the following (as has been done in our example code):

1 Build the shared library with MATLAB Compiler using either the Library Compiler
or mcCc.

2 Compile application code against the library’s header file and link the application
against the component library and 1ibmwmcImcrrt. See “Set MATLAB Runtime

B-3

B write Applications for Mac or Linux

Paths on Mac or Linux with Scripts” on page B-11 and “Solving Problems
Related to Setting MATLAB Runtime Paths on Mac or Linux” on page B-11 for
information about and MATLAB runtime paths and IibmwmclImcrrt.

3 In your Apple Xcode project:

Specify mcc in the project target (Build Component Library in the example code).
+ Specify target settings in HEADER_SEARCH_PATHS.

* Specify directories containing the library header.
+ Specify the path matlabroot/extern/include.

* Define MWINSTALL_ROOT, which establishes the install route using a relative
path.

+ Set LIBRARY_SEARCH_PATHS to any directories containing the shared library, as
well as to the path matlabroot/runtime/maci64.

Build and Run the Sierpinski Application

In this example, you deploy the graphical Sierpinski function (sierpinski.m, located at
matlabroot/extern/examples/compiler).

function [x, y] = sierpinski(iterations, draw)
% SIERPINSKI Calculate (optionally draw) the points
% in Sierpinski®s triangle

% Copyright 2004 The MathWorks, Inc.

ice wide triangle

% Three points defining a n
10.1; 0.90.1];

points = [0.5 0.9 ; O.

% Select an initial point
current = rand(l1, 2);

% Create a figure window
if (draw == true)

T = figure;

hold on;
end

% Pre-allocate space for the results, to improve performance
X zeros(1, iterations);
y = zeros(l,iterations);

Write Applications for Mac or Linux

% lterate

for

x(i) =

3
4

end

i = l:iterations

% Select point at random
index = floor(rand * 3) + 1;

% Calculate midpoint between current point and random point
current(l) = (current(l) + points(index, 1)) / 2;
current(2) = (current(2) + points(index, 2)) / 2;
% Plot that point

if draw, line(current(l),current(2));, end
current(l);

y(i) = current(2);

if (draw)

end

drawnow;

Using the Mac Finder, locate the Apple Xcode project (matlabroot/extern/
examples/compi ler/xcode). Copy files to a working directory to run this example,
if needed.

Open sierpinski.xcodeproj. The development environment starts.

In the Groups and Files pane, select Targets.
Click Build and Run. The make file runs that launches MATLAB Compiler (mcc).

Running the Sierpinski Application

Run the Sierpinski application from the build output directory. The following GUI

appears:

B write Applications for Mac or Linux

B-6

amnm spierpinski

Iterations |

(: Y
. Draw Triangle)

Initialized

MATLAB Sierpinski Function Implemented in the Mac Cocoa Environment

1 In the Iterations field, enter an integer such as 10000:

Write Applications for Mac or Linux

lterations

10000

(Draw Triangle)

Using 10000 iterations

2 Click Draw Triangle. The following figure appears:

B write Applications for Mac or Linux

e&NoO

Figure 1

nar

0.4 r

0.6

0.5 F

RO 0EH

A
e
. =
s ok
ﬁmﬁ.&a.ﬁ
m«ﬁ *E.m
ﬁﬁ\ .ITJ\'\-
wf’«‘um PR
i “k
N !'l.'.‘l:'..
i A2

N
s g

B-8

Build Your Application on Mac or Linux

Build Your Application on Mac or Linux

In this section...

“Compiling Your Application with the Compiler Apps” on page B-9

“Compiling Your Application with the Command Line” on page B-9

Compiling Your Application with the Compiler Apps

When running a graphical interface from your Mac or Linux desktop, use “Create and
Install a Standalone Application from MATLAB Code” as a template for building a
standalone application with the Application Compiler. Use “Create a C/C++ Shared
Library from MATLAB Code” for creating a shared library with the Library Compiler.

Compiling Your Application with the Command Line

For compiling your application at the command line, there are separate Macintosh and
non-Macintosh instructions for Mac or Linux platforms.

On Non-Mac i64 Platforms

Use the section “Input and Output Files” for lists of files produced and supplied to mcc
when building a “Standalone Executable”, “C Shared Library”, or “C++ Shared Library”.

On Macié4

Use the section “Input and Output Files” for lists of files produced and supplied to mcc
when building a “Macintosh 64 (Maci64)” application.

B-9

B Test Your Application on Mac or Linux

Test Your Application on Mac or Linux

On Windows, deployed applications automatically modify the system PATH variable.

On Mac OS X or Linux, deployed applications do not modify the system PATH variable.
You must perform this step manually.

B-10

Set MATLAB Runtime Paths on Mac or Linux with Scripts

Set MATLAB Runtime Paths on Mac or Linux with Scripts

When you build applications, associated shell scripts (run_application.sh) are
automatically generated in the same folder as your binary. By running these scripts, you
can conveniently set the path to your MATLAB runtime location.

Solving Problems Related to Setting MATLAB Runtime Paths on Mac or
Linux

Use the following to solve common problems and issues:

| tried running SETENV on Mac and the command failed

If the setenv command fails with a message similar to setenv: command not found
or setenv: not found, you are not using a C Shell command interpreter (such as csh
or tcsh).

Set the environment variables using the export command using the format export
my_variable=my value.

For example, to set DYLD_LIBRARY_PATH, run the following command:

export DYLD_LIBRARY_PATH = mcr_root/v711/runtime/maci64:mcr_root/ ...

My Mac application fails with “Library not loaded” or
“Image not found” even though my EVs are set

If you set your environment variables, you may still receive the following message when
you run your application:

imac-joe-user:~ joeuser$ /Users/joeuser/Documents/MATLAB/Dip/Dip ; exit;
dyld: Library not loaded: @loader_path/libmwmcImcrrt.7.11.dylib
Referenced from: /Users/joeuser/Documents/MATLAB/Dip/Dip

Reason: image not found

Trace/BPT trap

logout

B-11

B My Mac application fails with “Library not loaded” or “Image not found” even though my EVs are set

B-12

You may have set your environment variables initially, but they were not set up as
persistent variables. Do the following:

1

In your home directory, open a file such as .bashrc or .profile file in your log-in
shell.

In either of these types of log-in shell files, add commands to set your environment
variables so that they persist. For example, to set DYLD_L IBRARY_PATH in this
manner, you enter the following in your file:

Setting PATH for MCR

DYLD_LIBRARY_PATH=/Users/joeuser/Desktop/mcr/v711/runtime/maci64:
/Users/joeuser/Desktop/mcr/v711/sys/os/maci64:/Users/joeuser/Desktop/
mcr//v711/bin/maci64

export DYLD_LIBRARY_PATH

?

Note: The DYLD_ L IBRARY_PATH= statement is one statement that must be entered
as a single line. The statement is shown on different lines, in this example, for
readability only.

C++ Utility Library Reference

C

Data Conversion Restrictions for the C++ MWArray API

Data Conversion Restrictions for the C++ MWArray API

Currently, returning a Java object to your application, from a compiled MATLAB
function, is unsupported.

Primitive Types

Primitive Types

The mwArray API supports all primitive types that can be stored in a MATLAB array.
This table lists all the types.

Type Description mxClassID
mxChar Character type mxXCHAR_CLASS
mxLogical Logical or Boolean type mxLOGICAL_CLASS
mxDouble Double-precision floating- |mxDOUBLE_CLASS
point type
mxSingle Single-precision floating- mxSINGLE_CLASS
point type
mxInt8 1-byte signed integer mxINT8 CLASS
mxUint8 1-byte unsigned integer mxUINT8_CLASS
mxIntl6 2-byte singed integer mxINT16_CLASS
mxUintl6 2-byte unsigned integer mxUINT16_ CLASS
mx Int32 4-byte signed integer mxINT32_CLASS
mxUint32 4-byte unsigned integer mxUINT32_CLASS
mx Int64 8-byte signed integer mxINT64_CLASS
mxUint64 8-byte unsigned integer mxXUINT64_ CLASS

C-3

C o Utility Classes

C++ Utility Classes

C+4

mwString

mwString

String class used by the mwArray API to pass string data as output from certain methods

Description

The mwString class is a simple string class used by the mwArray API to pass string data
as output from certain methods.

Required Headers

mclcppclass.h
mclmcrrt.h

Tip MATLAB Compiler automatically includes these header files in the header file
generated for your MATLAB functions.

Constructors

mwString()
Description

Create an empty string.

mwString(char* str)
Description
Create a new string and initialize the string’s data with the supplied char buffer.

Arguments

char* str Null terminated character buffer

C-5

C mwString

mwString(mwString& str)
Description

Create a new string and initialize the string’s data with the contents of the supplied
string.

Arguments

‘mwStri ng& str Initialized mwString instance

Methods

int Length() const
Description
Return the number of characters in string.

Example

mwString str("This is a string™);
int len = str.Length(Q);

Operators

operator const char* () const
Description
Return a pointer to internal buffer of string.

Example

mwString str("This is a string™);
const char* pstr = (const char*)str;

C-6

mwString

mwString& operator=(const mwString& str)
Description
Copy the contents of one string into a new string.

Arguments

mwString& str Initialized mwString instance to copy

Example

mwString str("This is a string™);
mwString new_str = str;

mwString& operator=(const char* str)
Description
Copy the contents of a null terminated character buffer into a new string.

Arguments

char* str Null terminated character buffer to copy

Example

const char* pstr = "This is a string";
mwString str = pstr;

bool operator==(const mwString& sir) const
Description

Test two mwString instances for equality. If the characters in the string are the same,
the instances are equal.

Arguments

mwString& str Initialized mwString instance

C-7

C mwString

Example

mwString str("This is a string");
mwString str2("'This is another string");
bool ret = (str == str2);

bool operator!=(const mwString& str) const
Description

Test two mwString instances for inequality. If the characters in the string are not the
same, the instances are inequal.

Arguments

mwString& str Initialized mwString instance

Example

mwString str(""This is a string™);
mwString str2("This is another string™);
bool ret = (str != str2);

bool operator<(const mwString& str) const
Description

Compare two strings and return true if the first string is lexicographically less than the
second string.

Arguments

mwString& str Initialized mwString instance

Example
mwString str("This is a string™);

mwString str2(*'This is another string™);
bool ret = (str < str2);

C-8

mwString

bool operator<=(const mwString& str) const
Description

Compare two strings and return true if the first string is lexicographically less than or
equal to the second string.

Arguments

mwString& str Initialized mwString instance

Example

mwString str("This is a string™);
mwString str2(*'This is another string™);
bool ret = (str <= str2);

bool operator>(const mwString& str) const
Description

Compare two strings and return true if the first string is lexicographically greater than
the second string.

Arguments

mwString& str Initialized mwString instance

Example

mwString str(""This is a string");
mwString str2("'This is another string");
bool ret = (str > str2);

bool operator>=(const mwString& str) const
Description

Compare two strings and return true if the first string is lexicographically greater than
or equal to the second string.

C-9

C mwString

Arguments

mwString& str Initialized mwString instance

Example

mwString str("This is a string");
mwString str2("'This is another string');
bool ret = (str >= str2);

friend std::ostream& operator<<(std::ostream& os, const mwString& str)
Description

Copy contents of input string to specified ostream.

Arguments

std: :ostream& os Initialized ostream instance to copy string
into

mwString& str Initialized mwString instance to copy

Example

#include <ostream>
mwString str("This is a string™);
std::cout << str << std::endl;

C-10

mwException

mwException

Exception type used by the mwArray API and the C++ interface functions

Description

The mwException class is the basic exception type used by the mwArray API and the C+
+ interface functions. All errors created during calls to the mwArray API and to MATLAB
Compiler generated C++ interface functions are thrown as mwExceptions.

Required Headers

+ mclcppclass.h
+ mclmcrrt.h

Tip MATLAB Compiler automatically includes these header files in the header file
generated for your MATLAB functions.

Constructors

mwException()

Description

Construct new mwException with default error message.

mwException(char* msg)
Description
Create an mwException with a specified error message.

Arguments

char* msg Null terminated character buffer to use as
the error message

C-11

C mwException

mwException(mwException& e)
Description
Create a copy of an mwException.

Arguments

‘mWException& e ‘Initialized mwException instance to copy

mwException(std::exception& e)
Description
Create new mwException from existing std: :exception.

Arguments

‘std: exception& e std: :exception to copy

Methods

char* what{() const throw()
Description
Return the error message contained in this exception.

Example

try

{

¥

catch (const std::exception& e)

{
}

std::cout << e.what() << std::endl;

C-12

mwException

void print_stack_trace()
Description

Print the stack trace to std: :cerr.

Operators

mwException& operator=(const mwException& e)
Description
Copy the contents of one exception into a new exception.

Arguments

mwException& e An initialized mwException instance to
copy

Example

try
{

}

catch (const mwException& e)

{
mwException e2 = e;
throw e2;

}

mwException& operator=(const std::exception& e)
Description
Copy the contents of one exception into a new exception.

Arguments

std: :exception& e std: :exception to copy

C-13

C mwException

Example

try
{

}

catch (const std::exception& e)

{

mwException e2 = e;
throw e2;

C-14

mwArray

mwArray

Class used to pass input/output arguments to MATLAB Compiler generated C++
interface functions

Description

Use the mwArray class to pass input/output arguments to MATLAB Compiler generated
C++ interface functions. This class consists of a thin wrapper around a MATLAB array.
As explained in further detail in the MATLAB documentation, all data in MATLAB is
represented by matrices (in other words, even a simple data structure should be declared
as a 1-by-1 matrix). The mwArray class provides the necessary constructors, methods,
and operators for array creation and initialization, as well as simple indexing.

Note: Arithmetic operators, such as addition and subtraction, are no longer supported as
of Release 14.

Required Headers

+ mclcppclass.h
+ mclmerrt.h

Tip MATLAB Compiler automatically includes these header files in the header file
generated for your MATLAB functions.

Constructors

mwArray()
Description

Construct empty array of type mxDOUBLE_CLASS.

C-15

C mwArray

mwArray(mxClassID mxID)
Description
Construct empty array of specified type.

Arguments

mxClassID mxID Valid mxClassID specifying the type

of array to construct. See the “Work
with mxArrays” for more information on
mxClassID.

mwArray(mwSize num_rows, mwSize num_cols, mxClassID mxID,
mxComplexity cmplx = mxREAL)

Description

Create a 2—-D matrix of the specified type and complexity. For numeric types, the matrix
can be either real or complex. For numeric types, pass mXCOMPLEX for the last argument
to create a complex matrix. All elements are initialized to zero. For cell matrices, all
elements are initialized to empty cells.

Arguments

mwSize num_rows Number of rows in the array

mwSize num_cols Number of columns in the array

mxClassID mxID Valid mxClassID specifying the type
of array to construct. See the “Work
with mxArrays” for more information on
mxClassID.

mxComplexity cmplx Complexity of the array to create. Valid
values are mXxREAL and mxCOMPLEX. The
default value is mxREAL.

C-16

mwArray

mwArray(mwSize num_dims, const mwSize* dims, mxClassID mxID,
mxComplexity cmplx = mxREAL)

Description

Create an n-dimensional array of the specified type and complexity. For numeric types,
the array can be either real or complex. For numeric types, pass mxCOMPLEX for the last
argument to create a complex matrix. All elements are initialized to zero. For cell arrays,
all elements are initialized to empty cells.

Arguments

mwSize num_dims Number of dimensions in the array

const mwSize* dims Dimensions of the array

mxClassID mxID Valid mxClassID specifying the type
of array to construct. See the “Work
with mxArrays” for more information on
mxClassID.

mxComplexity cmplx Complexity of the array to create. Valid
values are mXREAL and mxCOMPLEX. The
default value is mxREAL.

mwArray(const char* str)

Description

Create a 1-by-n array of type mxCHAR_CLASS, with n = strlen(str), and initialize the
array's data with the characters in the supplied string.

Arguments

const char* str Null-terminated character buffer used to
initialize the array

C-17

C mwArray

C-18

mwArray(mwSize num_strings, const char** str)

Description

Create a matrix of type mXCHAR_CLASS, and initialize the array's data with the
characters in the supplied strings. The created array has dimensions m-by-max, where
max is the length of the longest string in str.

Arguments
mwSize num_strings Number of strings in the input array
const char** str Array of null-terminated strings

mwArray(mwSize num_rows, mwSize num_cols, int num_fields, const
char** fieldnames)

Description

Create a matrix of type mxSTRUCT_CLASS, with the specified field names. All elements
are initialized with empty cells.

Arguments
mwSize num_rows Number of rows in the array
mwSize num_cols Number of columns in the array
int num_Tfields Number of fields in the struct matrix.
const char** fieldnames Array of null-terminated strings
representing the field names

mwArray(mwSize num_dims, const mwSize* dims, int num_fields, const
char** fieldnames)

Description

Create an n-dimensional array of type mxSTRUCT_CLASS, with the specified field names.
All elements are initialized with empty cells.

mwArray

Arguments

mwSize num_dims

Number of dimensions in the array

const mwSize* dims

Dimensions of the array

int num_Ffields

Number of fields in the struct matrix.

const char** fieldnames

Array of null-terminated strings
representing the field names

mwArray(const mwArray& arr)

Description

Create a deep copy of an existing array.

Arguments

‘mwArray& arr

mwArray to copy

mwArray(<type> re)
Description

Create a real scalar array.

The scalar array is created with the type of the input argument.

Arguments

<type> re

Scalar value to initialize the array. <type>

can be any of the following:

+ mxDouble
+ mxSingle

+ mxInt8

+ mxUint8
+ mxIntl6

+ mxUintl6é

C-19

C mwArray

C-20

* mxInt32
+ mxUint32
+ mxInt64
+ mxUint64

+ mxLogical

mwArray(<type> re, <type> im)
Description

Create a complex scalar array.

The scalar array is created with the type of the input argument.

Arguments

<type> re Scalar value to initialize the real part of
the array

<type> im Scalar value to initialize the imaginary

part of the array

<type> can be any of the following:

« mxDouble

+ mxSingle

+ mxInt8

+ mxUint8
- mxIntl6
+ mxUintl6
+ mxInt32
+ mxUint32
+ mxInt64
+ mxUint64

mwArray

+ mxLogical

Methods

mwArray Clone() const
Description
Create a new array representing deep copy of array.

Example

mwArray a(2, 2, mxDOUBLE_CLASS);
mwArray b = a.Clone();

mwArray SharedCopy() const
Description

Create a shared copy of an existing array. The new array and the original array both
point to the same data.

Example

mwArray a(2, 2, mxDOUBLE_CLASS);
mwArray b = a.SharedCopy();

mwArray Serialize() const

Description

Serialize an array into bytes. A 1-by-n numeric matrix of type mxUINT8 CLASS is
returned containing the serialized data. The data can be deserialized back into the

original representation by calling mwArray: :Deserialize().

Example

mwArray a(2, 2, mxDOUBLE_CLASS);

C-21

C mwArray

mwArray b = a.Serialize();

mxClassID ClassID() const
Description

Determine the type of the array. See the “Work with mxArrays” for more information on
mxClassID.

Example

mwArray a(2, 2, mxDOUBLE_CLASS);
mxClassID id = a.ClassID();

int ElementSize() const
Description
Determine the size, in bytes, of an element of array type.

Example

mwArray a(2, 2, mxDOUBLE_CLASS);
int size = a.ElementSize();

size_t ElementSize() const
Description
Determine the size, in bytes, of an element of array type.

Example

mwArray a(2, 2, mxDOUBLE_CLASS);
int size = a.ElementSize();

mwSize NumberOfElements() const
Description

Determine the total size of the array.

C-22

mwArray

Example

mwArray a2, 2, mxDOUBLE_CLASS);
int n = a.NumberOfElements();

mwSize NumberOfNonZeros() const
Description

Determine the size of the of the array's data. If the underlying array is not sparse, this
returns the same value as NumberOfElements().

Example

mwArray a(2, 2, mxDOUBLE_CLASS);
int n = a_.NumberOfNonZeros();

mwSize MaximumNonZeros() const
Description

Determine the allocated size of the of the array's data. If the underlying array is not
sparse, this returns the same value as NumberOfElements().

Example

mwArray a(2, 2, mxDOUBLE_CLASS);
int n = a.MaximumNonZeros();

mwSize NumberOfDimensions() const
Description
Determine the dimensionality of the array.

Example

mwArray a(2, 2, mxDOUBLE_CLASS);
int n = a.NumberOfDimensions();

C-23

C mwArray

C-24

int NumberOfFields() const

Description

Determine the number of fields in a struct array. If the underlying array is not of type
struct, zero is returned.

Example
const char* fields[] = {"a", "b", "c"};

mwArray a(2, 2, 3, fields);
int n = a.NumberOfFields();

mwString GetFieldName(int index)
Description

Determine the name of a given field in a struct array. If the underlying array is not of
type struct, an exception is thrown.

Arguments
int index Index of the field to name. Indexing starts
at zero.
Example

const char* fields[] = {"a", "b", "c"};
mwArray a(2, 2, 3, fields);

mwString tempname = a.GetFieldName(l);
const char* name = (const char*)tempname;

mwArray GetDimensions() const
Description

Determine the size of each dimension in the array. The size of the returned array is 1-
by-NumberOfDimensions().

Example

mwArray a(2, 2, mxDOUBLE_CLASS);
mwArray dims = a.GetDimensions();

mwArray

bool IsEmpty() const
Description
Determine if an array is empty.

Example

mwArray a;
bool b = a.lIsEmpty();

bool IsSparse() const
Description
Determine if an array is sparse.

Example

mwArray a(2, 2, mxDOUBLE_CLASS);
bool b = a.lIsSparse();

bool IsNumeric() const
Description
Determine if an array is numeric.

Example

mwArray a(2, 2, mxDOUBLE_CLASS);
bool b = a.lsNumeric();

bool IsComplex() const
Description
Determine if an array is complex.

Example

mwArray a(2, 2, mxDOUBLE_CLASS, mxCOMPLEX);
bool b = a.lIsComplex();

C-25

C mwArray

bool Equals(const mwArray& arr) const
Description

Returns true if the input array is byte-wise equal to this array. This method makes

a byte-wise comparison of the underlying arrays. Therefore, arrays of the same type
should be compared. Arrays of different types will not in general be equal, even if they
are initialized with the same data.

Arguments

mwArray& arr Array to compare to array.

Example

mwArray a(l, 1, mxDOUBLE_CLASS);
mwArray b(1, 1, mxDOUBLE_CLASS);
a=1.0;

b =1.0;

bool c = a.Equals(b);

int CompareTo(const mwArray& arr) const
Description

Compares this array with the specified array for order. This method makes a byte-

wise comparison of the underlying arrays. Therefore, arrays of the same type should be
compared. Arrays of different types will, in general, not be ordered equivalently, even if
they are initialized with the same data.

Arguments

mwArray& arr Array to compare to array.

Example

mwArray a(l, 1, mxDOUBLE_CLASS);
mwArray b(1, 1, mxDOUBLE_CLASS);
1.0;
1.0;
n =

- ®
=]
= 1 Il

a.CompareTo(b);

C-26

mwArray

int HashCode() const

Description

Constructs a unique hash value form the underlying bytes in the array. Therefore, arrays
of different types will have different hash codes, even if they are initialized with the same
data.

Example

mwArray a(l, 1, mxDOUBLE_CLASS);
int n = a.HashCode();

mwString ToString() const
Description

Returns a string representation of the underlying array. The string returned is the same
string that is returned by typing a variable's name at the MATLAB command prompt.

Example

mwArray a(l, 1, mxDOUBLE_CLASS, mxCOMPLEX) ;
a.Real() = 1.0;
a.lmag() = 2.0;
printfF("%s\n", (const char*)(a.ToString()));

mwArray Rowindex() const
Description

Returns an array of type mxINT32_CLASS representing the row indices (first dimension)
of this array. For sparse arrays, the indices are returned for just the non-zero elements
and the size of the array returned is 1-by-NumberOfNonZeros(). For nonsparse arrays,
the size of the array returned is 1-by-NumberOfElements(), and the row indices of all of
the elements are returned.

Example

#include <stdio.h>
mwArray a(l, 1, mxDOUBLE_CLASS);

C-27

C mwArray

C-28

mwArray rows = a.Rowlndex();

mwArray Columnindex() const
Description

Returns an array of type mxINT32_CLASS representing the column indices (second
dimension) of this array. For sparse arrays, the indices are returned for just the non-
zero elements and the size of the array returned is 1-by-NumberOfNonZeros(). For
nonsparse arrays, the size of the array returned is 1-by-NumberOfElements(), and the
column indices of all of the elements are returned.

Example

mwArray a(l, 1, mxDOUBLE_CLASS);
mwArray rows = a.Columnindex();

void MakeComplex()
Description

Convert a numeric array that has been previously allocated as real to complex. If the
underlying array is of a nonnumeric type, an mwException is thrown.

Example

double rdata[4] = {1.0, 2.0, 3.0, 4.0};
double idata[4] = {10.0, 20.0, 30.0, 40.0};
mwArray a(2, 2, mxDOUBLE_CLASS);
a.SetData(rdata, 4);

a.MakeComplex();

a.Imag() -SetData(idata, 4);

mwArray Get(mwSize num_indices, ...)
Description

Fetches a single element at a specified index. The index is passed by first passing
the number of indices followed by a comma-separated list of 1-based indices. The
valid number of indices that can be passed in is either 1 (single subscript indexing),
in which case the element at the specified 1-based offset is returned, accessing data

mwArray

in column-wise order, or NumberOfDimensions() (multiple subscript indexing),

in which case, the index list is used to access the specified element. The valid

range for indices is 1 <= index <= NumberOfElements(), for single subscript
indexing. For multiple subscript indexing, the ith index has the valid range:

1 <= index[i1] <= GetDimensions().Get(1l, 1).An mwException is thrown if an
invalid number of indices is passed in or if any index is out of bounds.

Arguments

mwSize num_indices Number of indices passed in
Comma-separated list of input indices.
Number of items must equal num_indices
but should not exceed 32.

Example

double data[4] = {1.0, 2.0, 3.0, 4.0};
double x;

mwArray a2, 2, mxDOUBLE_CLASS);
a.SetData(data, 4);

a.Get(1,1);

a.Get(2, 1, 2);

a.cet(2, 2, 2);

X X X
I n

mwArray Get(const char* name, mwSize num_indices, ...)
Description

Fetches a single element at a specified field name and index. This method may
only be called on an array that is of type mxSTRUCT _CLASS. An mwException is
thrown if the underlying array is not a struct array. The field name passed must
be a valid field name in the struct array. The index is passed by first passing the
number of indices followed by a comma-separated list of 1-based indices. The valid
number of indices that can be passed in is either 1 (single subscript indexing), in
which case the element at the specified 1-based offset is returned, accessing data
in column-wise order, or NumberOfDimensions() (multiple subscript indexing),
in which case, the index list is used to access the specified element. The valid
range for indices is 1 <= index <= NumberOfElements(), for single subscript
indexing. For multiple subscript indexing, the ith index has the valid range:

1 <= index[i] <= GetDimensions().Get(1l, i).An mwException isthrown if an
invalid number of indices is passed in or if any index is out of bounds.

C-29

C mwArray

C-30

Arguments

char* name Null-terminated character buffer
containing the name of the field

mwSize num_indices Number of indices passed in
Comma-separated list of input indices.
Number of items must equal num_indices
but should not exceed 32.

Example

const char* fields[] = {"a", "b", "c"};

mwArray a(l1, 1, 3, fields);
mwArray b a.cet('a"™, 1, 1);
mwArray b a.Get('b™, 2, 1, 1);

mwArray Get(mwSize num_indices, const mwindex* index)

Description

Fetches a single element at a specified index. The index is passed by first passing

the number of indices, followed by an array of 1-based indices. The valid number

of indices that can be passed in is either 1 (single subscript indexing), in which

case the element at the specified 1-based offset is returned, accessing data in
column-wise order, or NumberOfDimensions() (multiple subscript indexing),

in which case, the index list is used to access the specified element. The valid

range for indicesis 1 <= Index <= NumberOfElements(), for single subscript
indexing. For multiple subscript indexing, the ith index has the valid range:

1 <= index[i] <= GetDimensions().Get(1l, 1).An mwException isthrown if an
invalid number of indices is passed in or if any index is out of bounds.

Arguments

mwSize num_indices Size of index array

mwlIndex* index Array of at least size num_indices
containing the indices

Example

double data[4] = {1.0, 2.0, 3.0, 4.0};

mwArray

int index[2] = {1, 1};

double x;

mwArray a(2, 2, mxDOUBLE_CLASS);
a.SetData(data, 4);

X = a.Get(l, index);

X = a.Get(2, index);

index[0] = 2;

index[1] = 2;

X = a.Get(2, index);

mwArray Get(const char* name, mwSize num_indices, const mwindex*
index)

Description

Fetches a single element at a specified field name and index. This method may only be
called on an array that is of type mxSTRUCT _CLASS. An mwException is thrown if the
underlying array is not a struct array. The field name passed must be a valid field
name in the struct array. The index is passed by first passing the number of indices
followed by an array of 1-based indices. The valid number of indices that can be passed in
is either 1 (single subscript indexing), in which case the element at the specified 1-based
offset is returned, accessing data in column-wise order, or NumberOfDimensions()
(multiple subscript indexing), in which case, the index list is used to access the specified
element. The valid range for indices is 1 <= index <= NumberOfElements(), for
single subscript indexing. For multiple subscript indexing, the ith index has the valid
range: 1 <= index[i] <= GetDimensions().Get(1l, i1).An mwExceptionis
thrown if an invalid number of indices is passed in or if any index is out of bounds.

Arguments

char* name Null-terminated character buffer
containing the name of the field

mwSize num_indices Number of indices passed in

mwlIndex* index Array of at least size num_indices
containing the indices

Example

const char* fields[] = {"a", "b", "c"};
int index[2] = {1, 1};
mwArray a(l1, 1, 3, fields);

C-31

C mwArray

C-32

mwArray b
mwArray b

a.Get(a", 1, index);
a.Get("'b"™, 2, index);

mwArray Real()
Description

Accesses the real part of a complex array. The returned mwArray is considered real and
has the same dimensionality and type as the original.

Complex arrays consist of Complex numbers, which are 1 X 2 vectors (pairs). For
example, if the number is 3+51, then the pair is (3,51). An array of Complex numbers
is therefore two dimensional (N X 2), where N is the number of complex numbers in
the array. 2+4i, 7-31, 8+61 would be represented as (2,41) (7,31) (8,61).
Complex numbers have two components, real and imaginary.

The MATLAB function Realcan be applied to an array of Complex numbers. It extracts
the corresponding part of the Complex number. For example, REAL(3,51) == 3.

Example

double rdata[4] = {1.0, 2.0, 3.0, 4.0};
double idata[4] = {10.0, 20.0, 30.0, 40.0};
mwArray a(2, 2, mxDOUBLE_CLASS, mxCOMPLEX) ;
a.Real () -SetData(rdata, 4);

mwArray Imag()

Description

Accesses the imaginary part of a complex array. The returned mwArray is considered real
and has the same dimensionality and type as the original.

Complex arrays consist of Complex numbers, which are 1 X 2 vectors (pairs). For
example, if the number is 3+51, then the pair is (3,51). An array of Complex numbers
is therefore two dimensional (N X 2), where N is the number of complex numbers in
the array. 2+4i1, 7-3i, 8+61 would be represented as (2,41) (7,3i) (8,61).
Complex numbers have two components, real and imaginary.

The MATLAB function Imag can be applied to an array of Complex numbers. It extracts
the corresponding part of the Complex number. For example, IMAG(3+51) == 5. Imag
returns 5 in this case and not 5i. Imag returns the magnitude of the imaginary part of
the number as a real number.

mwArray

Example

double rdata[4] = {1.0, 2.0, 3.0, 4.0};
double idata[4] = {10.0, 20.0, 30.0, 40.0%};
mwArray a(2, 2, mxDOUBLE_CLASS, mxCOMPLEX);
a.Imag() -SetData(idata, 4);

void Set(const mwArray& arr)

Description

Assign shared copy of input array to currently referenced cell for arrays of type
mxXCELL_CLASS and mxSTRUCT_CLASS.

Arguments

mwArray& arr mwArray to assign to currently referenced
cell

Example

mwArray a(2, 2, mxDOUBLE_CLASS);
mwArray b(2, 2, mxINT16_CLASS);
mwArray c(1, 2, mxCELL_CLASS);
c.Get(1,1).Set(a);
c.Get(1,2).Set(b);

void GetData(<numeric-type>* buffer, mwSize len) const
Description
Copies the array's data into supplied numeric buffer.

The data is copied in column-major order. If the underlying array is not of the same
type as the input buffer, the data is converted to this type as it is copied. If a conversion
cannot be made, an mwException is thrown.

Arguments

<numeric-type>* buffer Buffer to receive copy. Valid types for
<numeric-type> are:

C-33

C mwArray

C-34

* mxDOUBLE_CLASS
* mxSINGLE_CLASS
+ mxINT8_CLASS

* mxUINT8_CLASS
+ mxINT16_CLASS
+ mxUINT16_CLASS
+ mxINT32_CLASS
* mxUINT32_CLASS
+ mxINT64_CLASS
+ mxUINT64_CLASS

mwSize len Maximum length of buffer. A maximum of
len elements will be copied.

Example

double rdata[4] = {1.0, 2.0, 3.0, 4.0};
double data_copy[4] ;

mwArray a(2, 2, mxDOUBLE_CLASS);
a.SetData(rdata, 4);
a.GetData(data_copy, 4);

void GetlogicalData(mxLogical* buffer, mwSize len) const
Description

Copies the array's data into supplied mxLogical buffer.

The data is copied in column-major order. If the underlying array is not of type

mxLOGICAL_CLASS, the data is converted to this type as it is copied. If a conversion
cannot be made, an mwException is thrown.

Arguments

mxLogical* buffer Buffer to receive copy

mwSize len Maximum length of buffer. A maximum of
len elements will be copied.

mwArray

Example

mxLogical data[4] = {true, false, true, false};
mxLogical data_copy[4] :

mwArray a(2, 2, mxLOGICAL_CLASS);
a.SetlLogicalData(data, 4);
a.GetlLogicalData(data_copy, 4);

void GetCharData(mxChar* buffer, mwSize len) const
Description
Copies the array's data into supplied mxChar buffer.

The data is copied in column-major order. If the underlying array is not of type
mXCHAR_CLASS, the data is converted to this type as it is copied. If a conversion cannot
be made, an mwvException is thrown.

Arguments

mxChar** buffer Buffer to receive copy

mwSize len Maximum length of buffer. A maximum of
len elements will be copied.

Example

mxChar data[6] = {"H", "e" , "I" , "1" , "0o" , °"\O"};
mxChar data_copy[6] :

mwArray a(l, 6, mxCHAR_CLASS);

a.SetCharData(data, 6);

a.GetCharData(data_copy, 6);

void SetData(<numeric-type>* buffer, mwSize len) const
Description
Copies the data from supplied numeric buffer into the array.

The data is copied in column-major order. If the underlying array is not of the same
type as the input buffer, the data is converted to this type as it is copied. If a conversion
cannot be made, an mwException is thrown.

C-35

C mwArray

Arguments

<numeric-type>* buffer Buffer containing data to copy. Valid types
for <numeric-type> are:
+ mxDOUBLE_CLASS

+ mxSINGLE_CLASS

* mxINT8_CLASS

+ mxUINT8_CLASS

+ mxINT16_CLASS

+ mxUINT16_CLASS

* mxINT32_CLASS

+ mxUINT32_CLASS

+ mxINT64_CLASS

+ mxUINT64_CLASS

mwSize len Maximum length of buffer. A maximum of
len elements will be copied.

Example

double rdata[4] = {1.0, 2.0, 3.0, 4.0};
double data_copy[4] :

mwArray a(2, 2, mxDOUBLE_CLASS);
a.SetData(rdata, 4);
a.GetData(data_copy, 4);

void SetlogicalData(mxLogical* buffer, mwSize len) const
Description
Copies the data from the supplied mxLogical buffer into the array.

The data is copied in column-major order. If the underlying array is not of type
mxLOGICAL_CLASS, the data is converted to this type as it is copied. If a conversion
cannot be made, an mwException is thrown.

Arguments

mxLogical* buffer Buffer containing data to copy

C-36

mwArray

mwSize len Maximum length of buffer. A maximum of
len elements will be copied.

Example

mxLogical data[4] = {true, false, true, false};
mxLogical data_copy[4] :

mwArray a2, 2, mxLOGICAL_CLASS);
a.SetlLogicalData(data, 4);
a.GetLogicalData(data_copy, 4);

void SetCharData(mxChar* buffer, mwSize len) const
Description
Copies the data from the supplied mxChar buffer into the array.

The data is copied in column-major order. If the underlying array is not of type
mxXCHAR_CLASS, the data is converted to this type as it is copied. If a conversion cannot
be made, an mwvException is thrown.

Arguments

mxChar** buffer Buffer containing data to copy

mwSize len Maximum length of buffer. A maximum of
len elements will be copied.

Example

mxChar data[6] = {"H", "e" , 1" , "1" , "0o" , "\O0"};
mxChar data_copy[6]

mwArray a(l, 6, mxCHAR_CLASS);

a.SetCharData(data, 6);

a.GetCharData(data_copy, 6);

static mwArray Deserialize(const mwArray& arr)
Description

Deserializes an array that has been serialized with mwArray: :Serialize(). The input
array must be of type mxUINT8_CLASS and contain the data from a serialized array. If

C-37

C mwArray

the input data does not represent a serialized mwArray, the behavior of this method is

undefined.

Arguments

mwArray& arr mwArray that has been obtained by calling
mwArray: :Serialize

Example

double rdata[4] = {1.0, 2.0, 3.0, 4.0};
mwArray a(l,4,mxDOUBLE_CLASS);
a.SetData(rdata, 4);

mwArray b = a.Serialize();

a = mwArray: :Deserialize(b);

static mwArray NewSparse(mwSize rowindex_size, const mwindex*
rowindex, mwSize colindex_size, const mwIndex* colindex, mwSize
data_size, const mxDouble* rData, mwSize num_rows, mwSize
num_cols, mwSize nzmax)

Description

Creates real sparse matrix of type double with specified number of rows and columns.
The lengths of input row, column index, and data arrays must all be the same or equal to
1. In the case where any of these arrays are equal to 1, the value is repeated throughout

the construction of the matrix.

If any element of the rowindex or col index array is greater than the specified values
in num_rows or num_cols respectively, an exception is thrown.

Arguments

mwSize rowindex size Size of rowindex array

mwlndex* rowindex Array of row indices of non-zero elements
mwSize colindex_size Size of col index array

C-38

mwArray

mwlndex* colindex Array of column indices of non-zero
elements

mwSize data_size Size of data array

mxDouble* rData Data associated with non-zero row and
column indices

mwSize num_rows Number of rows in matrix

mwSize num_cols Number of columns in matrix

mwSize nzmax Reserved storage for sparse matrix.

If nzmax is zero, storage will be set to
max{rowindex_size, colindex_size,
data_size}.

Example

This example constructs a sparse 4 X 4 tridiagonal matrix:

2-1 0 O
-1 2-1 0
0-1 2 -1
0O 0-1 2

The following code, when run:

double rdata[] =

{2.0, -1.0, -1.0, 2.0, -1.

-1.0, 2.0, -1.0, -1.0, 2.
mwindex row_tridiag[] =

{1, 2, 1, 2, 3,

2, 3, 4, 3, 4 };
mwindex col_tridiag[] =

{1, 1, 2, 2, 2,

3, 3, 3, 4, 4 3}

mwArray mysparse =
mwArray: :NewSparse(10, row_tridiag,
10, col_tridiag,

10, rdata, 4, 4, 10)

std::cout << mysparse << std::endl;

will display the following output to the screen:
,1) 2

C-39

C mwArray

.1) -1
(1.2) -1
2.2) 2
3.2) -1
2.3) -1
(3.3) 2
4.,3) -1
(3.4) -1
(CY) 2

static mwArray NewSparse(mwSize rowindex_size, const mwindex*
rowindex, mwSize colindex_size, const mwindex* colindex, mwSize
data_size, const mxDouble* rdata, mwSize nzmax)

Description

Creates real sparse matrix of type double with number of rows and columns inferred
from input data.

The lengths of input row and column index and data arrays must all be the same or equal
to 1. In the case where any of these arrays are equal to 1, the value is repeated through
out the construction of the matrix.

The number of rows and columns in the created matrix are calculated form the input
rowindex and col index arrays as num_rows = max{rowindex}, num_cols =
max{col index}.

Arguments

mwSize rowindex_size Size of rowindex array

mwlndex* rowindex Array of row indices of non-zero elements

mwSize colindex_size Size of col index array

mwlndex* colindex Array of column indices of non-zero
elements

mwSize data_size Size of data array

mxDouble* rData Data associated with non-zero row and
column indices

C-40

mwArray

mwSize nzmax Reserved storage for sparse matrix.

If nzmax is zero, storage will be set to
max{rowindex_size, colindex_size,
data_size}.

Example

In this example, we construct a sparse 4 X 4 identity matrix. The value of 1.0 is copied to
each non-zero element defined by row and column index arrays:

double one = 1.0;
mwindex row_diag[] = {1, 2, 3, 4};
mwindex col_diag[] = {1, 2, 3, 4};

mwArray mysparse =
mwArray: :NewSparse(4, row_diag,
4, col_diag,

1, &one,
0):
std::cout << mysparse << std::endl;
(1,1) 1
(2,2) 1
(3.,3) 1
4.,4) 1

static mwArray NewSparse(mwSize rowindex_size, const mwindex*
rowindex, mwSize colindex_size, const mwIndex* colindex, mwSize
data_size, const mxDouble* rdata, const mxDouble* idata, mwSize
num_rows, mwSize num_cols, mwSize nzmax)

Description

Creates complex sparse matrix of type double with specified number of rows and
columns.

The lengths of input row and column index and data arrays must all be the same or equal
to 1. In the case where any of these arrays are equal to 1, the value is repeated through
out the construction of the matrix.

If any element of the rowindex or col index array is greater than the specified values
in num_rows, num_cols, respectively, then an exception is thrown.

C-41

C mwArray

C-42

Arguments

mwSize rowindex_ size

Size of rowindex array

mwlndex* rowindex

Array of row indices of non-zero elements

mwSize colindex size

Size of col index array

mwlndex* colindex

Array of column indices of non-zero
elements

mwSize data size

Size of data array

mxDouble* rData

Real part of data associated with non-zero
row and column indices

mxDouble* iData

Imaginary part of data associated with
non-zero row and column indices

mwSize num_rows

Number of rows in matrix

mwSize num_cols

Number of columns in matrix

mwSize nzmax

Reserved storage for sparse matrix.

If nzmax is zero, storage will be set to
max{rowindex_size, colindex_size,
data_size}.

Example

This example constructs a complex tridiagonal matrix:

double rdata[] =

{.0, -1.0, -1.0, 2.0, -1.0, -1.0, 2.0, -1.0, -1.0, 2.03};

double idata[] =

{20.0, -10.0, -10.0, 20.0, -10.0, -10.0, 20.0, -10.0,

mwindex row_tridiag[] =

{1, 2, 1, 2, 3, 2,
mwindex col_tridiag[] =
{1, 1, 2, 2, 2, 3,

-10.0, 20.0};

3, 4, 3, 4};

3, 3, 4, 4};

mwArray mysparse = mwArray::NewSparse(10, row_tridiag,

std::cout << mysparse << std::endl;

10, col_tridiag,
10, rdata,

idata, 4, 4, 10);

mwArray

It displays the following output to the screen:

a,1) 2.0000 +20.0000i
.1 -1.0000 -10.0000i
1,2 -1.0000 -10.0000i
2.2 2.0000 +20.0000i
3.2 -1.0000 -10.0000i
2.3) -1.0000 -10.0000i
(3.3) 2.0000 +20.0000i
4,3) -1.0000 -10.0000i
(3.4 -1.0000 -10.0000i
4,4 2.0000 +20.0000i

static mwArray NewSparse(mwSize rowindex_size, const mwindex*
rowindex, mwSize colindex_size, const mwIndex* colindex, mwSize
data_size, const mxDouble* rdata, const mxDouble* idata, mwSize
nzmax)

Description

Creates complex sparse matrix of type double with number of rows and columns
inferred from input data.

The lengths of input row and column index and data arrays must all be the same or equal
to 1. In the case where any of these arrays are equal to 1, the value is repeated through
out the construction of the matrix.

The number of rows and columns in the created matrix are calculated form the input
rowindex and col index arrays as num_rows = max{rowindex}, num _cols =
max{colindex}.

Arguments

mwSize rowindex_size Size of rowindex array

mwlndex* rowindex Array of row indices of non-zero elements

mwSize colindex_size Size of col index array

mwlndex* colindex Array of column indices of non-zero
elements

mwSize data_size Size of data array

C-43

C mwArray

mxDouble* rData Real part of data associated with non-zero
row and column indices

mxDouble* iData Imaginary part of data associated with
non-zero row and column indices

mwSize nzmax Reserved storage for sparse matrix.

If nzmax is zero, storage will be set to
max{rowindex_size, colindex_size,
data_size}.

Example

This example constructs a complex matrix by inferring dimensions and storage allocation
from the input data.

mwArray mysparse =
mwArray: :NewSparse(10, row_tridiag,
10, col_tridiag,
10, rdata, idata,
0);

std::cout << mysparse << std::endl;

a,1) 2.0000 +20.0000i
@,1) -1.0000 -10.0000i
1,2 -1.0000 -10.0000i
2.2 2.0000 +20.0000i
3.2 -1.0000 -10.0000i
2.,3) -1.0000 -10.0000i
(3.,3) 2.0000 +20.0000i
“4,3) -1.0000 -10.0000i
3,4 -1.0000 -10.0000i
4,4 2.0000 +20.0000i

*

static mwArray NewSparse(mwSize rowindex_size, const mwindex
rowindex, mwSize colindex_size, const mwindex* colindex, mwSize
data_size, const mxLogical* rdata, mwSize num_rows, mwSize num_cols,
mwSize nzmax)

Description

Creates logical sparse matrix with specified number of rows and columns.

C-44

mwArray

The lengths of input row and column index and data arrays must all be the same or
equal to 1. In the case where any of these arrays are equal to 1, the value is repeated

throughout the construction of the matrix.

If any element of the rowindex or col index array is greater than the specified values
in hum_rows, num_cols, respectively, then an exception is thrown.

Arguments

mwSize rowindex_size

Size of rowindex array

mwilndex* rowindex

Array of row indices of non-zero elements

mwSize colindex size

Size of col index array

mwilndex* colindex

Array of column indices of non-zero
elements

mwSize data_size

Size of data array

mxLogical* rData

Data associated with non-zero row and
column indices

mwSize num_rows

Number of rows in matrix

mwSize num_cols

Number of columns in matrix

mwSize nzmax

Reserved storage for sparse matrix.

If nzmax is zero, storage will be set to
max{rowindex_size, colindex_size,
data_size}.

Example

This example creates a sparse logical 4 X 4 tridiagonal matrix, assigning true to each

non-zero value:

mxLogical one = true;
mwindex row_tridiag[]
{1, 2, 1,
2, 3, 4,
mwindex col_tridiag[]
{1, 1, 2,
3, 3, 3,

mwArray mysparse =

mwArray: :NewSparse(10, row_tridiag,

C-45

C mwArray

10, col_tridiag,
1, &one,
4, 4, 10);
std::cout << mysparse << std::endl;

.1
2,1
1.2
2,2)
@G,2)
2,3)
@G,3)
(4,3)
G.4)
4,4

RPRRPRRPRRRRRRPR

*

static mwArray NewSparse(mwSize rowindex_size, const mwindex
rowindex, mwSize colindex_size, const mwindex* colindex, mwSize
data_size, const mxLogical* rdata, mwSize nzmax)

Description
Creates logical sparse matrix with number of rows and columns inferred from input data.

The lengths of input row and column index and data arrays must all be the same or equal
to 1. In the case where any of these arrays are equal to 1, the value is repeated through
out the construction of the matrix.

The number of rows and columns in the created matrix are calculated form the input
rowindex and col index arrays as num_rows = max {rowindex}, num_cols =
max {colindex}.

Arguments

mwSize rowindex_size Size of rowindex array

mwlndex* rowindex Array of row indices of non-zero elements

mwSize colindex_size Size of col index array

mwlndex* colindex Array of column indices of non-zero
elements

mwSize data_size Size of data array

C-46

mwArray

mxLogical* rData Data associated with non-zero row and
column indices

mwSize nzmax Reserved storage for sparse matrix.

If nzmax is zero, storage will be set to
max{rowindex_size, colindex_size,
data_size}.

Example

This example uses the data from the first example, but allows the number of rows,
number of columns, and allocated storage to be calculated from the input data:

mwArray mysparse =
mwArray: :NewSparse(10, row_tridiag,
10, col_tridiag,
1, &one,
0):
std: :cout << mysparse << std::endl;

.1
2,1
1.2
2,2)
3,2
2,3)
@G,3)
(4,3)
@G.4)
4,4

RPRRPRRPRRRRRRPR

static mwArray NewSparse (mwSize num_rows, mwSize num_cols,
mwSize nzmax, mxClassID mxID, mxComplexity cmplx = mxREAL)

Description

Creates an empty sparse matrix. All elements in an empty sparse matrix are initially
zero, and the amount of allocated storage for non-zero elements is specified by nzmax.

Arguments

mwSize num_rows Number of rows in matrix

C-47

C mwArray

mwSize num_cols Number of columns in matrix
mwSize nzmax Reserved storage for sparse matrix
mxClassID mxID Type of data to store in matrix. Currently,

sparse matrices of type double
precision and logical are supported.
Pass mxDOUBLE_CLASS to create a
double precision sparse matrix. Pass
mxLOGICAL_CLASS to create a logical
sparse matrix.

mxComplexity cmplx Complexity of matrix. Pass mxCOMPLEX
to create a complex sparse matrix and
MXREAL to create a real sparse matrix.
This argument may be omitted, in which
case the default complexity is real

Example

This example constructs a real 3 X 3 empty sparse matrix of type double with reserved
storage for 4 non-zero elements:

mwArray mysparse = mwArray::NewSparse
(3, 3, 4, mxDOUBLE_CLASS);
std: :cout << mysparse << std::endl;

All zero sparse: 3-by-3

static double GetNaN()

Description
Get value of NaN (Not-a-Number).

Call mwArray: :GetNaN to return the value of NaN for your system. NaN is the IEEE
arithmetic representation for Not-a-Number. Certain mathematical operations return
NaN as a result, for example:

+ 0.0/0.0
« Inf-Inf

The value of NaN is built in to the system; you cannot modify it.

C-48

mwArray

Example

double x = mwArray::GetNaN(Q);

static double GetEps|()
Description

Returns the value of the MATLAB eps variable. This variable is the distance from 1.0
to the next largest floating-point number. Consequently, it is a measure of floating-point
accuracy. The MATLAB pinv and rank functions use eps as a default tolerance.

Example

double x = mwArray: :GetEps();

static double Getinf()

Description

Returns the value of the MATLAB internal Inf variable. Inf is a permanent variable
representing IEEE arithmetic positive infinity. The value of InF is built into the system,;
you cannot modify it.

Operations that return Inf include

+ Division by 0. For example, 5/0 returns InF.

* Operations resulting in overflow. For example, exp(10000) returns Inf because the
result is too large to be represented on your machine.

Example

double x = mwArray::GetInf();

static bool IsFinite(double x)
Description

Determine whether or not a value is finite. A number is finite if it is greater than - Inf
and less than Inf.

C-49

C mwArray

Arguments

doullbe x Value to test for finiteness

Example

bool x = mwArray::IsFinite(1.0);

static bool IsInf(double x)

Description

Determines whether or not a value is equal to infinity or minus infinity. MATLAB
stores the value of infinity in a permanent variable named Inf, which represents IEEE
arithmetic positive infinity. The value of the variable, Inf, is built into the system; you
cannot modify it.

Operations that return infinity include

* Division by 0. For example, 5/0 returns infinity.

* Operations resulting in overflow. For example, exp(10000) returns infinity because
the result is too large to be represented on your machine. If the value equals NaN
(Not-a-Number), then mx1sInf returns false. In other words, NaN is not equal to
infinity.

Arguments

‘dou Ibe x Value to test for infiniteness

Example

bool x = mwArray::IsInf(1.0);

static bool IsNaN(double x)

Description

Determines whether or not the value is NaN. NaN is the IEEE arithmetic representation
for Not-a-Number. NaN is obtained as a result of mathematically undefined operations
such as

+ 0.0/0.0

C-50

mwArray

« Inf-Inf

The system understands a family of bit patterns as representing NaN. In other words,
NaN is not a single value, rather it is a family of numbers that the MATLAB software
(and other IEEE-compliant applications) use to represent an error condition or missing
data.

Arguments

doullbe x Value to test for NaN

Example

bool x = mwArray::IsNaN(1.0);

Operators

mwArray operator()(mwindex i1, mwindex i2, mwindex i3, ...,)
Description

Fetches a single element at a specified index. The index is passed as a comma-

separated list of 1-based indices. This operator is overloaded to support 1 through

32 indices. The valid number of indices that can be passed in is either 1 (single

subscript indexing), in which case the element at the specified 1-based offset is

returned, accessing data in column-wise order, or NumberOfDimensions() (multiple
subscript indexing), in which case, the index list is used to access the specified element.
The valid range for indices is 1 <= index <= NumberOfElements(), for single
subscript indexing. For multiple subscript indexing, the ith index has the valid range:

1 <= index[i] <= GetDimensions().Get(1l, i1).An mwException isthrown if an
invalid number of indices is passed in or if any index is out of bounds.

Arguments

mwindex 11, mwlindex 12, mwlndex Comma-separated list of input indices
i31 0 ooy

Example

double data[4] = {1.0, 2.0, 3.0, 4.0};

C-51

C mwArray

C-52

double x;

mwArray a(2, 2, mxDOUBLE_CLASS);
a.SetData(data, 4);

a(1,1);

a(l1,2);

a(2,2);

X
X
X

mwArray operator()(const char* name, mwindex i1, mwindex i2,
mwindex i3, ...,)

Description

Fetches a single element at a specified field name and index. This method may only

be called on an array that is of type mxSTRUCT_CLASS. An mwException is thrown

if the underlying array is not a struct array. The field name passed must be a valid
field name in the struct array. The index is passed by first passing the number of
indices, followed by an array of 1-based indices. This operator is overloaded to support
1 through 32 indices. The valid number of indices that can be passed in is either 1
(single subscript indexing), in which case the element at the specified 1-based offset is
returned, accessing data in column-wise order, or NumberOfDimensions() (multiple
subscript indexing), in which case, the index list is used to access the specified element.
The valid range for indicesis 1 <= index <= NumberOfElements(), for single
subscript indexing. For multiple subscript indexing, the ith index has the valid range:
1 <= index[i] <= GetDimensions().Get(1l, 1).An mwException isthrown if an
invalid number of indices is passed in or if any index is out of bounds.

Arguments

char* name Null terminated string containing the field
name to get

mwindex i1, mwlndex i2, mwlndex Comma-separated list of input indices
i3y coog

Example

const char* fields[] = {"a", "b", "c"};
int index[2] = {1, 1};

mwArray a(l1, 1, 3, Ffields);

mwArray b = a(*a", 1, 1);

mwArray b a(b", 1, 1);

mwArray

mwArray& operator=(const <type>& x|
Description

Sets a single scalar value. This operator is overloaded for all numeric and logical types.

Arguments

const <type>& Xx Value to assign
Example

mwArray a(2, 2, mxDOUBLE_CLASS);

a(l1,1) = 1.0;

a(l,2) = 2.0;

a(2,1) = 3.0;

a(2,2) = 4.0;

operator <type>() const
Description

Fetches a single scalar value. This operator is overloaded for all numeric and logical
types.

Example

double data[4] = {1.0, 2.0, 3.0, 4.0};
double x;

mwArray a2, 2, mxDOUBLE_CLASS);
a.SetData(data, 4);

(double)a(1,1);

(double)a(1,2);

(double)a(2,1);

(double)a(2,2);

X X X X
o nn

C-53

C-54

Apps — Alphabetical List

20 Apps — Alphabetical List

20-2

Application Compiler

Package MATLAB programs for deployment as standalone applications

Description
The Application Compiler packages MATLAB programs into applications that can run
outside of MATLAB.

Open the Application Compiler

MATLAB Toolstrip: On the Apps tab, under Application Deployment, click the app
icon.

MATLAB command prompt: Enter applicationCompiler.

Examples
“Create and Install a Standalone Application from MATLAB Code”

More About

“Standalone Applications”

Parameters

Main File

Specify the MATLAB function to package. This function is the entry point for the
application generated by the app.

Packaging Options
Specify how the MATLAB runtime is packaged with the application.

Default: Runtime downloaded from web

Application Compiler

Settings

Runtime downloaded from web

The generated installer downloads a compatible version of the MATLAB runtime, if
needed.

Runtime included in package

The generated installer includes a compatible version of the MATLAB runtime.

Settings
Specify the output folders for the packaged code.

Default:

+ Testing folder: for_testing
* Redistribution folder: for_redistribution

Application Information

Specify the following information:

* Splash screen

* Icon

* Version

* Name and contact information of the author
* Brief summary of the purpose

* Detailed description

You can change the default location where the application is installed and provide some
notes to the installer.

The provided information is displayed as the installer runs.

Files required for your application to run

Specify the MATLAB files and data files that the application requires to run. The listed
files are packaged into the generated archive.

20-3

20 Apps — Alphabetical List

Default: The list of files generated by the built-in dependency analysis tool.

Files installed with your application

Specify additional files that are installed by the generated installer. The listed files are
installed in the same folder as the installed archive.

Default: The executable file and a readme. txt file.

Programmatic Use

applicationCompiler

20-4

Hadoop Compiler

Hadoop Compiler

Package MATLAB programs for deployment to Hadoop clusters as MapReduce programs

Description
The Hadoop Compiler packages MATLAB functions into applications for deployment to
Hadoop clusters as MapReduce programs.

Open the Hadoop Compiler

MATLAB Toolstrip: On the Apps tab, under Application Deployment, click the app
icon.

MATLAB command prompt: Enter hadoopCompi ler.

Examples
“Package Deployable Archive to Run Against Hadoop with Hadoop Compiler App”

More About

“Large Files and Big Data”

Parameters

Map Function

Specify the MATLAB function for the mapper.

Reduce Function

Specify the MATLAB function for the reducer.

20-5

20 Apps — Alphabetical List

20-6

Input Types

Specify how the MATLAB runtime is packaged with the application.
Default: tabulartext

Settings

binary

The input is the result of a previous MapReduce job that was saved as a sequence
file.

tabulartext
The input is a formatted text file.

Output Types

Specify how the MATLAB runtime is packaged with the application.
Default: binary

Settings

binary

The output is saved as a sequence file.
tabulartext

The output is stored as a formatted text file.

Settings

Specify the output folders for the packaged code.
Default:

+ Testing folder: for_testing

* Redistribution folder: for_redistribution
Additional Configuration File Content

Specifies additional parameters to configure how Hadoop runs the job. See “Hadoop
Settings File”.

Hadoop Compiler

Data Store File

Specify the data store for the job to use.

Files Required for MapReduce Job to Run

Specify the MATLAB files and data files that the MapReduce job requires to run. The
listed files are packaged into the generated archive.

Default: The list of files generated by the built-in dependency analysis tool.

Programmatic Use

hadoopCompiler

20-7

20 Apps — Alphabetical List

20-8

Library Compiler

Package MATLAB programs for deployment as C/C++ shared libraries, Java packages,
and .NET assemblies

Description
The Library Compiler packages MATLAB functions into libraries for including
MATLAB functionality in applications written in other languages.

Open the Library Compiler

MATLAB Toolstrip: On the Apps tab, under Application Deployment, click the app
icon.

MATLAB command prompt: Enter libraryCompiler.

Examples
“Create a C/C++ Shared Library from MATLAB Code”
“Create a Microsoft Excel Add-In and COM Component from MATLAB Code”
“Create a .NET Assembly From MATLAB Code”
“Package a Deployable COM Component”
“Create a Java Package from MATLAB Code”

More About

“Shared Libraries”
“Component Creation”
“Add-in and Component Creation”

“Package Creation”

Library Compiler

Parameters

Type

Specify the type of library into which the MATLAB code will be packaged.
Default: C Shared Library

Settings

C Shared Library

Packaged code is being used to develop an application in C.
C++ Shared Library

Packaged code is being used to develop an application in C++.
Excel Add-in

Packaged code is being used as an Excel add-in.
NET Assembly

Packaged code is being used to develop an application in .NET.
Generic COM Component

Packaged code is being used to develop an application that uses COM.
Java Package

Packaged code is being used to develop an application in Java.

Exported Functions

Specify the MATLAB functions to package.

Packaging Options

Specify how the MATLAB runtime is packaged with the application.
Default: Runtime downloaded from web

Settings

Runtime downloaded from web

20-9

20 Apps — Alphabetical List

The generated installer downloads a compatible version of the MATLAB runtime, if
needed.

Runtime included in package

The generated installer includes a compatible version of the MATLAB runtime.

Settings
Specify the output folders for the packaged code.

Default:

+ Testing folder: for_testing
* Redistribution folder: for_redistribution

Application Information

Specify the following information:

* Splash screen

* Icon

* Version

+ Name and contact information of the author
* Brief summary of the purpose

* Detailed description

You can change the default location where the application is installed and provide some
notes to the installer.

The provided information is displayed as the installer runs.

Files required for your archive to run

Specify the MATLAB files and data files that the application requires to run. The listed
files are packaged into the generated archive.

Default: The list of files generated by the built-in dependency analysis tool.

20-10

Library Compiler

Files installed with your application

Specify additional files that are installed by the generated installer. The listed files are
installed in the same folder as the installed archive.

Programmatic Use

libraryCompiler

20-11

20 Apps — Alphabetical List

20-12

Production Server Compiler

Package MATLAB programs for deployment to MATLAB Production Server

Description
The Production Server Compiler packages MATLAB programs into archives for
deployment to MATLAB Production Server.

Open the Production Server Compiler

MATLAB Toolstrip: On the Apps tab, under Application Deployment, click the app
icon.

MATLAB command prompt: Enter productionServerCompiler.

Examples
“Create a Deployable Archive for MATLAB Production Server”
“Build Deployable Archive and Add-In”

More About

“Deployable Archive Creation”
“Integrate with MATLAB Production Server”
“MATLAB Production Server”

Parameters

Type
Specify the type of application the packaged code will be used in.

Default: Deployable Archive (.ctf)

Production Server Compiler

Settings
Deployable Archive (.ctf)

Packaged code is being used as part of an application where the client-side portion of
the application is written using one of the MATLAB Production Server APIs.

Deployable Archive with Excel Integration

Packaged code is being used as part of an application where the client-side portion
of the application is a generated Excel add-in. The app generates the Excel add-in as
well.

Exported Functions

Specify the MATLAB functions to package.

Settings

Specify the output folders for the packaged code.
Default:

+ Testing folder: for_testing

* Redistribution folder: for_redistribution
Archive Information

Specify the a name for the packaged application.

Default: Name of the first file in the Exported Functions list.

Files required for your archive to run

Specify the MATLAB files and data files that the application requires to run. The listed
files are packaged into the generated archive.

Default: The list of files generated by the built-in dependency analysis tool.

Files installed with your application

Specify additional files that are installed by the generated installer. The listed files are
installed in the same folder as the installed archive.

20-13

20 Apps — Alphabetical List

Default: The generated archive (.ctf) file and a readme . txt file.

Programmatic Use

productionServerCompiler

20-14

